① 数学 排列组合 A几几或者说原来的P几几,公式是什么
举例:A(3,2)=3×2
写的时候等号左边3是下标,2是上标,等号右边从下标3开始,连续乘上标2个数字,每个数字都比前面小1。
C(3,2)=(3×2)÷(2×1)=3,
或者C(3,2)=3!÷2!÷(3-2)!=(3×2)÷(2×1)÷1=3,
写的时候等号左边3是下标,2是上标,等号右边的分子从下标3开始,连续乘上标2个数字,每个数字都比前面小1,分母从上标2开始,连续乘上标2个数字,每个数字都比前面小1;或者用上标的阶乘,除以下标的阶乘,再除以上标与下标的差的阶乘。
排列组合中的基本计数原理
1、加法原理和分类计数法
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
(1) 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
(2)合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
② 排列组合公式 p几几的,怎么算
计算方式如下:
C(r,n)是“组合”,从n个数据中选出r个,C(r,n)=n!/[r!(n-r)!]。
A(r,n)是“选排列”,从n个数据中选出r个,并且对这r个数据进行排列顺序,A(r,n)=n!/(n-r)!。
A(3,2)=A(3,1)=(3x2x1)/1=6。
C(3,2)=C(3,1)=(3x2)/(2x1)=3。
加法原理和分类计数法
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
③ 数学中P代表什么
数学中P代表概率。
概率亦称“或然率”。它反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n大概率越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P (A) 表示。
(3)高中数学排列组合中p是什么扩展阅读:
一、概率的相关历史
概率是度量偶然事件发生可能性的数值。假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。以X作分母,Y作分子,形成了数值(用P代表)。
在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。
研究支配偶然事件的内在规律的学科叫概率论。属于数学上的一个分支。概率论揭示了偶然现象所包含的内部规律的表现形式。
所以,概率,对人们认识自然现象和社会现象有重要的作用。比如,社会产品在分配给个人消费以前要进行扣除,需扣除多少,积累应在国民收入中占多大比重等,就需要运用概率论来确定。
二、概率的相关性质
1、性质1:P(Φ)=0;
2、性质2:(有限可加性)当n个事件A1,…,An两两互不相容时:P(A1∪...∪An)=P(A1)+...+P(An);
3、性质3:对于任意一个事件A:P(A)=1-P(非A);
4、性质4:当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B);
5、性质5:对于任意一个事件A,P(A)≤1;
6、性质6:对任意两个事件A和B,P(B-A)=P(B)-P(A∩B);
7、性质7:(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。
④ 数学中,排列组合A C P分别代表什么求详细。
排列组合中P是旧版教材的写法,后来新版教材将P改成A,所以A和P是一样的,都是排列数。而C是排列组合中的组合数。
1、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示,旧版教材中用P(n,m)表示。
计算公式:
C(n,m)=C(n,n-m)。(n≥m)
排列组合中的基本计数原理
1、加法原理和分类计数法
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
(1)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
(2)合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
⑤ 谁能帮我解释一下数学排列组合中的p与c,现在网上的都看不懂,,帮我详细解答一下。
P是排列数而c表示是组合数例如
p下面是5上面是3是表示从5个元素中取出三个有顺序的排列则值为5X4X3
而C53是表示从五个元素中取出3个组成一组没有顺序则等于5X4X3/3×2X1=10上面所说的元素指不同元素。
⑥ 数学排列组合中C和P的意思 说详细点让我听懂,网上那些我看不懂.答得好,还有积分奖励.
C是组合 比如ABC中选2个组合 那么AB BA算一种组合 一共有AB AC BC 三种组合
P是排列(人教版把P写成A) 比如从ABC中选两个排列 那么AB BA算两种组合 一共有AB BA AC CA BC CB六种排列
⑦ 数学排列组合中的符号P是什么意思
旧教材上:P就是排列,如P(5,2)=5×4=20,
现在的教材用A.如A(5,2)=5×4=20.
⑧ 排列组合P符号什么意思
P就是排列数。各元素排列的顺序不同被视为是不同的方案。