㈠ 如何上好数学概念课
数学概念教学一般分为三个部分:引入,分析,应用。 概念的引入一定要侧重引起学生的注意力,激发学生的学习兴趣。在新课标中提到数学概念的引入要情境化,要顺其自然,而不能强加于人。在设置情境是一定要合乎学生的认知规律,要贴近生活,而不要刻意讲究形式。 在概念的系统学习过程中让学生有机会不同的角度认识概念,这不仅便于发挥知识的结构功能,使概念具有“生长活力”,有益于知识的获得、保持和应用,而且对发展学生的概括能力有特殊的意义。精心设计练习,在应用中强化概念间的联系,巩固概念网络,加深概念的理解。 如何上好计算 一、结合学生的生活实际,创设情境,创造性的使用教材。引导学生对算理的理解 二、运用自主探索、合作交流的学习方式。 教学中能让学生自己说出自己归纳的知识内容,教师尽可能不说;能让学生做的教师绝对不包办;能让学生自己发现找出合理答案的教师给与肯定。只有在不规范不准确的地方教师才可以作补充说明,教师不必要将自己的结论强加给学生。这样做师生间的距离近了,感情增加了。而积极的情感又能提高学生的心理和生理的活动能量,从而提高思维和学习潜能。 三、题组训练,以旧带新,发现规律。 比如 乘数末尾有0 的乘法口算方法的教学,主要是利用题组,运用迁移的方法,总结出积的末尾的0 的确定。让学生在比较中发现规律,并巩固简便的笔算方法。充分发挥学生潜能,使学生不再受束缚,使教学向民主化、人性化方面发展。 如何上好数学综合实践课 一、 明确数学综合实践课的教学目标 数学综合实践课的目的不是为了实践而实践,而主要是让学生通过活动有所体验 (比如: 让学生体验数学与现实生活的密切联系)、有所感悟、有所发展、有所提高。 二、 明确数学课和数学综合实践课的联系与区别 从课程设置地位看,数学课处于主导地位,数学综合实践课则处于辅助地位;从课程设置功能看,数学综合实践课是数学课的延伸和发展。这是两者的联系。两者的区别在于:①教学目标不同;②教学内容不同(数学综合实践课的教学内容可是某单元后教材安排的内容,也可是教师在教学过程中依据具体情况、需要等而自己设置的内容);③活动方式不同(数学综合实践课,可根据教学内容的需要,选择在室内上或室外上等);④教学组织形式不同(数学课一般以一个班作为教学对象,而数学综合实践课,它可依据实际情况,把几个班或一个年级合起来上课);⑤教师所处的地位不同(在数学综合实践课活动中,教师不是单一的知识传授者,而是学生活动的引导者、组织者、参与者、协调者和评价者)。 三、 要明确数学综合实践课的教学原则 ①自主性原则,体现一个“探”字(也就是说要引导学生自由地、主动地去探究问题);②实践性原则,落实一个“动”字(要让学生在活动中多动脑、多动口、多动手); ③趣味性原则,突出一个“趣”字(要让学生在活动过程中体会到乐趣); ⑥合作性原则;,数学综合实践课就是让学生“做数学,用数学。”
㈡ 如何上好初中数学“概念”课
在初中数学教学中,加强概念教学是学好数学的基础,是理解数学知识的前提,是学好定理、公式、法则和数学思想的基础,同时也是提高解题能力的关键.因此,数学概念是数学知识的基础,是数学思想与方法的载体,所以概念教学尤为重要. 下面谈谈对概念教学的粗浅认识一、创设情境,注重概念引入要成功地上好一堂新概念课,注意力应集中到创设情景、设计问题上,让学生在教师创设的问题情景中,学会观察、分析、揭示和概括,教师要为学生思考、探索、发现和创新提供尽可能大的自由空间,帮助学生去体会概念的形成、发展和概括的过程.
㈢ 如何上好数学概念课
因此,我们教师要结合学生的实际,挖掘教材中的有利因素,选择行之有效的方法,帮助学生理解概念。
一、应重视概念的产生过程
有的教师不讲概念产生的背景,也不经历概念的概括过程,用例题教学替代概念的概括过程,认为应用概念的过程就是理解概念的过程。殊不知没有过程的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性,难以实现概念的正确、有效应用,质量效益都无保障。
二、注重感性,符合学生认知规律
从具体到抽象,是人类认识的基本规律,中学生的抽象思维能力还处在发展过程中,其思维能力仍以直观感性为主。因此,我们在引入数学概念时,应从直观入手,巧妙地引导学生理解并掌握抽象的概念。概念教学要避免满堂灌,注入式的陈旧教学模式,就要在概念教学方法上创新。在教学方法上创新,应突出体现在问题提出和解决的方法上,即:教师提出问题的方法和引导学生善于提出质疑的思维方法。概念教学的首要环节不是向学生展示概念,而是结合概念自身的特征为学生创设一系列巧妙问题情景,极大限度地调动学生的参与意识,训练其思维能力。
三、前后联系,准确把握不同概念的区别和联系
数学知识的系统性很强,数学概念也不是孤立的,教师应从有关概念的逻辑联系和区别中,引导学生理解相关的数学概念,从而在学生头脑中形成一个比较完整准确的概念体系。数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
授人以鱼,不如授人以渔,教师在教学中要在挖掘新概念的内涵与外延的基础上,让学生理解并掌握概念,
改变学生去机械的背概念,套公式的坏习惯,教会学生分析问题、解决问题的能力,全面提高学生的数学素养。
㈣ 小学数学如何实施概念教学
一、数学和生活实际联系,引入概念
数学知识来源于生活,又应用于生活。把点滴生活经验变成系统数学知识目的在于使其更好地运用到生活中去,除了在课堂上一些与生活相连的习题更好体会知识的还是生活本生。
例如,在教学《认识钟表》时,认识整时和大约几时这两个数学概念本身就比较抽象,你若直接告诉孩子看钟点的方法:分针对着12,时针对着几就是几时,1时=60分,1分=60秒,孩子未必真正理解,而且长期地这样教学学生就不会去思考,产生一种依赖的心理。因此我们在课起始时便以猜谜揭示课题,而后分认识钟面,认识整时和大约几时三步走。认识钟面环节让学生根据已有经验说说钟面的认识,为了让学生的介绍更为有针对性把提问变成“你知道钟面上有什么?”这样学生根据手中的闹钟很容易回答。在学生拨钟也让学生自由的拨出一些整时并说说在这一时刻在干什么,这样学生对各个时段的认识就能联系生活而不仅仅停留在1~12各个数上。在“两个8时”这一环节,让学生根据生活经验充分的讨论两个8时的存在和不同,再指导学生会照样子用一句话说一说,同时从数学角度提醒学生在平时说话时要注意用上“早晨、上午、下午、晚上”
等词语,这样说起来就更清楚明白。钟面、整时和大约几时三个环节层层递进,每一个环节与学生经验紧密联系。
低年级小学生,由于年龄、知识和生活的局限,理解一个概念主要是凭借事物的具体形象。因此,在低年级数学概念教学的过程中,要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
二、迎合学生学习兴趣,引入概念
托尔斯泰说过:“成功的教育所需要的不是强制,而是激发学生的兴趣。”兴趣是成功的秘诀,是获取知识的开端,是求知欲的基础。学生对学习数学的兴趣,直接影响到课堂教学效率的高低。抽象的理论如果再加上干巴巴的讲解,必然不会引起学生的学习兴趣。
例如,在教学《认识角》时,
既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。教师可以事先做好一个只露出三角形一个角的教具,让学生观察露出的一个角,判断整个三角形是什么三角形。当露出一个直角时,学生马上回答这是个直角三角形;当露出一个钝角时,学生马上回答这是个钝角三角形;当露出一个锐角时,学生就自然而然地回答这是个锐角三角形。这时教师拿出的却不是锐角三角形,这样,学生就有了悬念:为什么有一个直角的是直角三角形,有一个钝角的是钝角三角形?而一个角是锐角的三角形就不一定是锐角三角形了呢?这时学生强烈的求知欲已经成为一种求知的“自我需要”,学生的学习兴趣得到了激发,使兴趣成为学生学习的动力,为教学新概念创造良好的学习气氛,使学生在获得概念的整个过程中感到学习的快乐。
三、动手操作,引入概念
低段小学生他们爱摆弄东西,什么都想尝试。但若遇到困难而无法解决时,操作的积极性就会下降。所以利用学生这种心理适当安排动手尝试的学习内容可以激发起学生的学习兴趣,更好得形成概念。
例如,在教学《米和厘米》时,在认识了“厘米”以后我安排学生通过测量,看看你身体上哪个部位的长度最接近一厘米。学生的积极性很高,先是拿出尺子不停的比划,然后三五成群的议论开了,积极主动地去寻求答案。在交流想法时,小朋友不仅给出了我想要的答案,更让我收获了不少的惊喜。
学生在操作、实践中获得感性认识,经历“充分感知-丰富表象-领悟内涵”的过程,在头脑中切实、清楚地建立了1厘米的实际长度和空间观念,突出了本节课的教学重点。
四、巧用多媒体,引入概念
应用多媒体辅助教学,充分激活课堂教学中的各个要素,全方位地调动和发挥教师在课堂教学中的主导作用和学生学习的主体作用,建立合理的教与学的关系,
例如,在教学《认识分数》时,我设计了这样一个动画:周末,同学们去野餐,在优美的音乐的声中,一群活泼可爱的小朋友来到了郊外,贴近生活化的情境一下子就吸引了学生的注意力。跟着提出问题:“把8个苹果和4瓶果汁平均分给2人,每人分得多少”?学生回答后动画演示分得的结果,非常直观地显示出“平均分”,加强了学生对“平均分”这个概念的理解。接着提出:“把一个生日蛋糕平均分成2份,每人分得多少”?演示“一半”,提出“一半”用什么数来表示?自然地引出本节课要研究的认识分数。
我们在教学中,要结合概念的特点和学生的实际,灵活掌握使用,优化数学概念教学,提高概念教学的有效性,更好地进行概念教学。
㈤ 浅谈如何上好数学概念课
琼海市第一小学张春喜概念是最基本的思维形式.数学中的命题,都是由概念构成的,数学中的推理和证明,又是由命题构成的.因此,数学概念的教学,是整个数学教学的一个重要环节.阿基米德说:给我一个支点,我可以撑起一个地球.正确的理解数学概念,是掌握数学知识的前提,数学概念好比支点,而数学法则、定理好比杠杆,可见概念的重要性.在本学期的教研活动中,我们校数学教研组也组织了全体老师一起研讨怎样组织数学概念课课堂教学,从中我受益匪浅.以下我根据在多年教学中,总结出概念教学的几点注重点,收到了良好的效果.
一、创设生活情境引入概念
教学一个新概念,首先应让学生明确学习它的意义,作用.因此,教师应设置合理的教学情景,使学生体会学习新概念的必要性.概念的引入,通常有两类:一类是从数学概念体系的发展过程引入,一类是从解决实际问题出发的引入.如教研活动中程教研员给我们展示的《认识小数》一课中,程老师在理解教材、尊重教材的基础上,把教材与学生的生活实际紧密联系起来.比如程老师在导入部分借助生活素材,创设了介绍老师女儿的身高和体重等的情景,让学生直观的认识到怎样的是小数从而引入课题;接着出现超市里商品的标价(标价都是用小数表示)等,把学习内容再具体化,拉近教材与学生之间的距离,使学生在生动具体的情境中认识小数,体现教学生活化,同时也能激发学生学习数学的兴趣.
又如我在四年级下册《三角形的特性》一课中,我找了很多生活中的三角形图片,先让学生观察情境图找出以前学过的三角形,让学生说出生活还有哪些物体上有三角形以及看看老师搜集到的物体上有三角形吗?给学生足够的时间去寻找发现三角形,引导学生汇报总结什么叫做三角形,从而引出三角形的概念.这个环节中我创设了学生感兴趣的生活情境,让学生自己去探索,自己动脑去发现这个图形所具有的特征,才能充分调动自己原有的生活经验,培养他们的观察和操作能力,让学生更加深刻的体会到角顶点和边的存在和三角形的概念.
二、体现自主探索概念的学习方式
学生所要学习的知识不应当都以定论的形式呈现,而是应当给学生提供进行探索性的学习的机会,作为教师需要的是加以适当的点拨.而学习概念的形成阶段,教师可以通过大量典型、丰富的实例,让学生在小组内自主探索活动中进行分析、比较、综合等,揭示概念的本质.例如,我在教学《三角形的特性》一课中,我在教学三角形的意义时,没有直接把由三条线段围成的图形叫做三角形这个定义直接地呈现给学生,而是组织学生仔细观察三角形这个图形,在小组内自主探索学习,然后汇报发现了什么.学生说的不够完整的,老师就紧紧围绕三条线段、围成这两个关键词进行引导学生观察,使学生认识到三角形必须具备两个条件:一、是否具有三条线段;二、是否围成封闭的图形.接着安排判断练习,从正反两方面进一步加深对三角形意义的理解.在上例中,我提供给学生说的时间和空间,满足了他们说的欲望,激发了他们思考问题的积极性,使学生一直处于一种积极主动学习的状态,增强了学生学习的主人翁意识,同学们为了显示自己的能力,不甘落后,纷纷举起了手,这是自主探索知识的学习方式的体现.
让学生动手实践、自主探索与合作交流是学生学习数学的重要方式.又如本学期我校举行的名师课堂教学中,卢冰老师在教学《年月日》一课中,组织了学生在自主探索的活动中学习年月日的概念. 首先卢老师让学生巧猜自己的生日, 引导学生分类观察自主探索出年月日的概念.接着卢老师大胆放手让学生从年历卡的观察中探讨学习,在小组里把自己的发现与同桌交流,完成这张统计卡等.卢老师充分发挥小组合作学习的优势,组织学生先分工再合作,在交流中不断地修正和完善自己的发现,在发现规律中体验到成功的喜悦与合作的快乐.这样做,即节省了时间,又实现了资源共享,这才是真正意义上的小组学习.
三、适当引导学生概括概念
概括是概念教学的核心.概括就是在思想上把从某类个别事物中抽取出来的属性,推广到该类的一切事物中去,从而形成关于这类事物的普遍性认识.概念教学中把握好概念括概念这一环节,有利于学生概括能力的培养.概括概念就是让学生通过前面的分析,比较,把这类事物的共同特征描述出来,并推广到一般,即给概念下了个定义.前面我提到的教学《三角形特性》一课中,我就可以让学生概括三角形的定义了.虽然学生的概括的不够完善,但三角形的本质已经出来了.教师接着给出两个条件:一、是否具有三条线段;二、是否围成封闭的图形.让学生理解由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形. 设计意图让学生关注三角形的特征,进一步完善定义.这样进行概念教学,不仅能扳住学生理解概念,而且能够培养学生的思维能力.
四、让学生明确概念的内涵
明确概念即明确概念的内涵和外延.明确概念,就是要明确包含在定义中的关键词语.例如:三角形的定义是:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形.让学生明确是否具有三条线段;是否围成封闭的图形.因此,教师在教学中,可以通过举例说明,也可以让学生举例生活中的三角形,从而发现问题.特别是举反例,如出示一些类似三角形而又不是三角形的图案让学生判断,这些巩固练习可以加深学生对概念的理解.从概念的形成(具体)到明确概念(一般),再到举出实例(具体)形成一个完整的概念认知过程.
五、让学生合理应用概念
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的原型,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成.学生在掌握概念的过程中,为了理解概念,需要有一个应用概念的过程,即通过运用概念去认识同类事物,推进对概念本质的理解.这是一个应用于理解同步的过程.学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造.除此之外,教师通过反例、错解等进行辨析,也有利于学生巩固概念.例如《三角形的特性》明确它的概念后,可以让学生判断是否是三角形,和生活中应用三角形稳定性的的例子.这是学生能用概念判断面临的某一事物是否属于反映的具体对象,是在知觉水平上进行的应用.
总之,对概念的讲解,一定要注意它的教法,一定要让学生理解,切勿死记硬背,如果学生概念不清,必将思路闭塞,逻辑紊乱,对法则、定理的理解更是无从谈起.因此,对数学概念课的教法,是数学教师需要长期探数学概念是客观事物中数与形的本质属性的反映.数学概念是构建数学理论大厦的基石,是导出数学定理和数学法则的逻辑基础,是提高解题能力的前提,是数学学科的灵魂和精髓.
㈥ 如何进行数学概念教学
如何进行数学概念的教学 数学是思维的科学,概念是思维的细胞,教好概念是教好数学的内在要求.概念教学搞不好,数学课程目标的实现就失去了根基. 李邦河院士指出,“数学根本上是玩概念的,不是玩技巧.技巧不足道也!”因此,我们必须重视数学概念的教学. 然而,当前不重视概念教学是一个比较普遍的现象.“一个定义,三项注意”式的抽象讲解,在学生对概念还没有基本理解的时候就要求学生进行概念的综合应用,许多教师甚至认为教概念不如多讲几道题目更“实惠”.更令人担心的是,有些教师不知如何教概念.这一问题必须引起我们的充分重视. 从教育与发展心理学的观点出发,概念教学的核心就是“概括”:将凝结在数学概念中的数学家的思维活动打开,以若干典型具体事例为载体,引导学生展开分析各事例的属性、抽象概括共同本质属性、归纳得出数学概念等思维活动而获得概念.数学教学要“讲背景,讲思想,讲应用”,概念教学则要强调让学生经历概念的概括过程.由于“数学能力就是以数学概括为基础的能力”,重视数学概念的概括过程对发展学生的数学能力具有重要的意义. 一般而言,概念教学应经历以下7个基本环节: (1)背景引入; (2)通过典型、丰富的具体例证(必要时要让学生自己举例),引导学生开展分析、比较、综合的活动; (3)概括共同本质特征得到概念的本质属性; (4)下定义(用准确的数学语言表达,可以通过看教科书完成); (5)概念的辨析,即以实例(正例、反例)为载体,引导学生分析关键词的含义,包括对概念特例的考察; (6)用概念作判断的具体事例,这里要用有代表性的简单例子,其目的是形成用概念作判断的具体步骤; (7)概念的“精致”,主要是建立与相关概念的联系,形成功能良好的数学认知结构. 概念教学要尽量采用归纳式,给学生提供概括的机会. 比如: “轴对称”概念的教学. 本课安排在苏科版教材八年级上册.根据《数学课程标准》的要求,主要任务是通过具体实例认识轴对称.由于没有“对应点”概念,还不能以“对应点连线段的垂直平分线”定义对称轴,学生只能凭观察、操作找出对称轴,因此本课的“数学味”较淡.如何才能将这样的内容上出“数学味”?关键是要注意在学生现有认知水平基础上提供概括机会,让学生经历从具体实例中归纳共同特征,并让学生从概念出发解释自己操作的合理性.主要过程如下: 第1步,列举生活中的对称实例,抽象出轴对称图形,说明通过“沿某条直线对折”可使直线两旁的部分相互重合,这里要注意例子的典型性、丰富性; 第2步,以问题“你能举出与老师所举例子具有相同结构的生活实例吗”,引导学生举出具有轴对称形象的实例; 第3步,概括所举例子的共同特征——存在一条直线l,沿l对折,两边的图形能够重合; 第4步,下定义; 第5步,辨析概念的关键词,即以正例、反例为载体,用变式推动概念的理解,如让学生举出常见的轴对称图形的例子并指出对称轴,讨论对称轴可能有多少条等; 第6步,让学生制作一个轴对称图形,并要求学生说出每一步骤的目的和依据,特别要问学生“为什么要先折叠”,让学生知道折痕就是对称轴. 这样,围绕轴对称概念的核心——对称轴,给学生更多的观察、操作、用概念说理等机会,使学生形成“轴对称图形”和“对称轴”的直观感受,为后续探索轴对称图形的性质提供基础.当然,这样的内容不必用太多的课时,实际上,学生完全有能力更快地进入轴对称图形性质的讨论.
㈦ 数学概念的教学过程一般分为哪几个阶段
概念是同类事物的本质特征的反映。数学概念是导出全部数学定理、法则的逻辑基础,数学概念是相互联系、由简到繁所形成的学科体系。概念教学是数学基础知识和基本技能教学的核心。数学概念课教学流程包括课前预习、课内探究和课后练习三大环节,具体流程图如下:
(一)课前预习
课前预习是数学学习的第一步,要求教师要设计相应的课前预习学案,预习内容所需时间以10-20分钟为宜,预习主要包括以下环节。
1、知识链接,温故知新
在预习学案中,教师结合本节课所授教学内容的实际,设计知识链接栏目。目的是设计问题引领学生复习本节将要用到的已学知识,包括知识与方法等,为本节课的学习打好基础,作好铺垫。
2、情景导引,体验概念
在预习学案中,教师结合所要学习的概念, 设计问题情境栏目,注重挖掘生活素材,创设与概念有关的情景,并设计相应问题引导学生分析总结,创设情景的目的在于,通过对一定数量感性材料的观察、分析,初步体验概念。
创设情景的方法有:①提供或布置学生查阅与概念形成有关的史料;②提供有概念有关的小故事、生活中的现象;③提供与概念有关的照片、图片、实物或模型;④指导学生动手操作实验、制作模型等。
3、自主学习,了解概念
该环节是学生自主阅读学习教材,注意的是教师要对学生自学本节课教材的部分内容提出明确要求,一般情况下,只要求学生自学概念形成部分,不宜预习过多内容。
4、收集问题,把握学情
教师引导学生通过预习,找出哪些问题已经基本掌握,哪些问题没有解决,还存在哪些疑惑。教师通过多种途径了解和收集学生学习过程中存在的问题,准确把握学情,做为课堂教学设计的重要依据。
㈧ 如何抓好"数学概念"的教学
如何抓好"数学概念"的教学
如何根据学生实际情况,让学生切实掌握好数学概念,从而为以后教学打好基础,这是教学中一个大问题。因为正确理解数学概念,是掌握数学基础知识的前提。概念一般说来比较抽象,但是又很普遍,哪里有思维活动,哪里就会有概念的出现和运用;哪里要用到知识,那里就要有用大大小小的概念来表达。可以说概念是思维的细胞,是表达知识的形式。所以在教学过程中学生牢固掌握概念是十分重要的。有些学生对于题目不能灵活运用,归根结谛还是没有真正掌握好概念。
帮助学生正确掌握好教学中出现的概念,要注意几点:
一、注重概念、公式的引入
一个好的开端是成功的一半。精心设计好一个开场白,可以立即激发起学生学习积极性和求知欲望,师生共同投入对新知识的研究和探索中去,从而使授课得以很好地进行下去。对于这样的引入,一般可以从具体实例出发,思考、探索,引出问题,然后想办法加以解决。就象如何根据汽车刹车后留下的刹车痕迹来判断汽车车速这个问题,从这样一个具体问题出发,学生思考,如何才能由刹车痕迹长短来判断司机是否超速,找书本,从书上找到计算方法,通过计算,解决这个问题,从而也就引出了一元二次不等式的解法。这样的教学,既能使学生牢固掌握好这个知识点,又能从中进行交通安全教育。
又如在讲授“复数概念扩展”一节时,就先让学生解一些学过的方程,从中了解到数如何从自然数集逐渐扩展到现在的实数集。然后举出方程,让学生思考如何解决。对于这个用以前学过的知识无法解决的问题,就需要用新的工具去解决它,这样就引出了虚数单位i,也就逐步把实数集扩展到了复数集。因为有了前面的经验,学生对于数集的扩展也就比较容易的接受了,虚数概念也就变得不难以理解了。
万事开头难。一节课的质量好坏,开始的引入起了很重要的作用,一节高水平的课,往往开始就是非常精彩的。
二、讲解概念,要抓住概念本质
对于概念课的教学,首先要让学生记住概念和公式的条件和结论是什么?是否可逆?它们的关系式是不是充要条件?其次,在学生掌握条件和结论以后,再具体讲解概念的内涵和外延,搞清概念间关系,对于一些比较容易混淆的概念可以做些比较,帮助理解其中的联系和区别,最后在掌握基本概念的基础上,再变化,再综合应用。在集合一章中,我就采用这一方法,把“子集”和“真子集”两概念放在一起加以比较,又把“交集”、“并集”和“补集”,三种集合运算联系起来,先从定义及表达式上反映它们区别,再在文字图上结合一些题目加以比较,使学生能更直观地看到集合间运算的关系,从感性认识上升到理性认识,从而掌握好这一知识点。
另外在讲授新概念时,还要经常把旧知识联系起来,温故而知新,从而对新概念的掌握有很大帮助,有利于知识的融会贯通。例如“反三角函数”一章的教学,就可以事先把前面学过的三角函数拿来,从三角函数的定义,解析式到图象和性质加以复习,并结合现在讲授的反三角函数的一些概念,对照比较,使学生对于整个三角学内容切实,全面的掌握。这样既重温了旧知识,又有利于新课的掌握,避免了前学后忘的弊病。
三、注重课后练习和反馈
最后在讲解了新概念以后,还要加强练习和反馈,一个新概念或一些新知识讲授下去以后,学生要有一个消化吸收的过程,这时就需要通过安排一些适当的训练加以反馈。这些练习可以分两步走:先是从基本练习出发,帮助学生熟悉、掌握好新概念,新知识,在基本内容掌握好以后,再根据班级学生实际情况,设计一些小转弯、小变化和小综合的题目,以便学生灵活运用知识去解决问题。
抓好概念教学是很重要的,它是各种教学环节中不可缺少的一环,而如何切实落实好概念教学,不仅是提高45分钟课堂教学效率,还要注重课前、课后的教学工作,对于出现的问题,产生的弊病,要及时加以纠正、解决,以便学生真正掌握好,理解好知识。