❶ 一年级数学题有哪些
1、学生排一行做游戏,小明的前面有15人,后面有21人,一共有多少人?
2、小红的妈妈买了一些苹果,第一天吃了一半,第二天吃了剩下的一半,还剩3个,妈妈一共买来多少个苹果?
3、小明有25本书,小红又给了小明10本,两人就一样多,小红原来有多少本书?
4、王明家的钟表对着一面镜子,从镜子里看,钟表上的时间是3点整,实际的钟表时间是几点?
5、从1数到100,有多少个数字“6”,把它们都写出来。
6、爸爸今年35岁,小明今年8岁,再过10年,爸爸比小明大几岁?
❷ 关于冬奥运会的数学题目有哪些
关于冬奥运会的数学题目有如下:
1、冬奥会城市与气温:正负数
本届冬奥会由北京主办,张家口承办。为什么选张家口而不是温度更低的东北,除了距离原因,和温度也有很大关系。
历届冬奥会通常在2月份举办,气温-17℃~10℃是最理想的温度。
2、冬奥会比赛年份:等差数列
冬奥会每隔4年举办一次,今年举办的是第24届冬奥会。
3、冬奥会比赛项目:分类与集合
本届北京冬奥会共设置7个大项,15个分项,109个小项。
以短道速滑为例,分为男子项目、女子项目和混合项目,又有500米、1000米、1500米单人赛,以及2000米、3000米、5000米接力赛。
4、不同国家的国旗:形状与比例
会场上的国旗基本都是长方形的,看起来差不多,但实际上,它们的长宽比例并不完全一致。比如,中国国旗比例为2:3,美国国旗为10:19,瑞典国旗为5:8。
而且,哪怕都是竖条纹的国旗,不同颜色的比例也可能是不同的,比如法国国旗的蓝、白、红宽度比就是30:33:37。
5、谷爱凌夺冠:旋转角度
在前两跳落后对手的情况下,谷爱凌上演了偏轴转体两周1620度。旋转圈数直观体现了滑雪大跳台的难度,从1080、1440到1620度,难度超级加倍,奇迹般夺冠。
❸ 大学高难度数学题有哪些
大学高难度数学题有高等代数,数学分析,常微分方程,解析几何,微分几何,初等数论,点击拓扑,概率论,事变函数,复变函数等题。
高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
通常认为,高等数学是由17世纪后微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。相对于初等数学和中等数学而言,学的数学较难,属于大学教程,因此常称“高等数学”,在课本常称“微积分”,理工科的不同专业。
文史科各类专业的学生,学的数学稍微浅一些,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
以上内容参考:网络—高等数学
❹ 小学一年级数学分类题有哪些
小学一年级数学分类题有:
一、求总数
1、花丛中飞走了28只蝴蝶,又飞走了9只,两次飞走了多少只?
2、马场上有39匹马,又来了50匹,现在马场上有多少匹?
3、一条公路两旁各种上40棵树,一共种多少棵树?
4、小明种了5棵花,小华、小红种的花和小明种的同样多。他们一共种了多少棵花?
5、一年(2)班有男同学34人,女同学20人,一年(2)班有学生多少人?
6、妈妈想买一件衣服,带了68元,还差7元,这件衣服一共需要多少钱?
二、求大数
1、小东有15本故事书,小东比小林少8本,小林有多少本故事书?
2、一本故事书8元,一本字典的价钱比一本故事书贵5元,一本字典多少钱?
3、红花27朵,黄花比红花多8朵,黄花有多少朵?
4、小明有60张邮票,小东比小明多10张,小东有多少张邮票?
5、一个数是70,另一个数比它多15,另一个数是多少?
6、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?
三、求部分数
1、一本书有30页,小林看了9页,还剩多少页?
2、乐乐有10元,买了一本课外书7元,找回多少钱?
3、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?
4、汽车总站有13辆汽车,开走了3辆,还有几辆?
5、书架上有36本书,拿走了一些,书架上还有9本书,拿走了多少本?
6、一组和二组同学一共折了58只纸鹤,其中二组折了30只,一组折了多少只?
四、求小数
1、一个数是60,另一个数比它少20,另一个数是多少?
2、小红折了50朵花,小青折的比小红少20朵,小青折了多少朵?
3、饲养组有30只公鸡,公鸡比母鸡多8只,有母鸡多少只?
4、比75少8的数是多少?
5、一件上衣80元,一条裤子比一件上衣便宜20元,一条裤子多少钱?
五、求相差数
1、小青两次画了17朵小花 ,第一次画了9朵小花,第二次比第一次少画了多少朵?
2、小灰免采了17个松果,小白兔采了8个,小灰兔比小白兔多采几个松果?
3、小青上午采摘了13箱草莓,下午采摘了8箱,上午比下午多摘了几箱?
4、小东折了30朵红花,小青折了20朵,小青再折了多少朵就和小东同样多?
5、一本课外书50页,小华看了20页,已看的比未看的少多少页?
❺ 数学题目题型有哪些
高考数学必考七个题型:
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
❻ 找规律的数学题有哪些
找规律的数学题如下:
问题:1、3、6、10、15、21的规律是什么。
解答:
列入数列1,3,6,10,,,an。
a2-a1=2。
a3-a2=3。
a4-a3=4。
an-a(n-1)=n。
可以得出:上面所有相加化简得an-a1=2+3+4+……+an=1+2+3+4+……+n=n(n+1)/2。
找规律题型的小技巧:
1、先观察,有什么特点,然后依次排查几种常用的方法,比如差值,相邻的三项有什么运算关系,如果数变化剧烈,可以考虑平方、立方,还要熟悉常用的一些平方值和立方值。
2、公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
3、求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法或其它方法加以证明。
❼ 世界数学经典名题有哪些
1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告.他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数.接着他又写出两组数字,用竖式连乘,两种计算结果相同.回到座位上,全体会员以暴风雨般的掌声表示祝贺.证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数.有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”.请你很快回答出他至少用了多少天?
2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨��班��达依尔.这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”.说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了.……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来.但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言.算算看,国王应给象棋发明人多少粒麦子?
3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们.题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人.然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?
4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”
5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家.他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”).如:10=3+7,16=5+11等等.他检验了很多偶数,都表明这个结论是正确的.但他无法从理论上证明这个结论是对的.1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明.因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想.世界上许多数学家为证明这个猜想作了很大努力,他们由“1+4”→“1+3”到1966年我国数学家陈景润证明了“1+2”.也就是任何一个充分大的偶数,都可表示成两个数的和,其中一个是素数,另一个或者是素数,或者是两个素数的积.你能把下面各偶数,写成两个素数的和吗?(1)100=(2)50=(3)20=
6.贝韦克的七个7二十世纪初英国数学家贝韦克友现了一个特殊的除式问题,请你把这个特殊的除式填完整.
7.刁藩都的墓志铭刁藩都是公元后三世纪的数学家,他的墓志铭上写到:“这里埋着刁藩都,墓碑铭告诉你,他的生命的六分之一是幸福的童年,再活了十二分之一度过了愉快的青年时代,他结了婚,可是还不曾有孩子,这样又度过了一生的七分之一;再过五年他得了儿子;不幸儿子只活了父亲寿命的一半,比父亲早死四年,刁藩都到底寿命有多长?
8.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3.结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?
9.布哈斯卡尔的算术题公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?
10.马塔尼茨基的算术题有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣.这件短衣值多少钱?
11.托尔斯泰的算术题俄国伟大的作家托尔斯泰,曾出过这样一个题:一组割草人要把二块草地的草割完.大的一块比小的一块大一倍,上午全部人都在大的一块草地割草.下午一半人仍留在大草地上,到傍晚时把草割完.另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完.问这组割草人共有多少人?(每个割草人的割草速度都相同)
12.涡卡诺夫斯基的算术题(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?
13.涡卡诺夫斯基的算术题(二)有人问船长,在他领导下的有多少人,他回答说:“2/5去站岗,2/7在工作,1/4在病院,27人在船上.”问在他领导下共有多少人?
14.数学家达兰倍尔错在哪里传说18世纪法国有名的数学家达兰倍尔拿两个五分硬币往下扔,会出现几种情况呢?情况只有三种:可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面.因此,两个都出现正面的概率是1∶3.你想想,错在哪里?
15.埃及金字塔世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高大,形状像个“金”字.它的底面是正方形,塔身的四面是倾斜着的等腰三角形.两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度.法列士选择一个晴朗的天气,组织测量队的人来到金字塔前.太阳光给每一个测量队的人和金字塔都投下了长长的影子.当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB).他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度.你会计算吗?
16.一笔画问题在18世纪的哥尼斯堡城里有七座桥.当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次.这就是世界上很有名的哥尼斯堡七桥问题.你能一次走遍这七座桥,而又不重复吗?
17.韩信点兵传说汉朝大将韩信用一种特殊方法清点士兵的人数.他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人).他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数.如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?
18.共有多少个桃子着名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学.在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了.于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了.第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了.第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了.问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来.
19.《九章算术》里的问题《九章算术》是我国最古老的数学着作之一,全书共分九章,有246个题目.其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?
20.《张立建算经》里的问题《张立建算经》是中国古代算书.书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元.现在用100元钱买100只鸡.问这100只鸡中,公鸡、母鸡、小鸡各有多少只?
21.《算法统宗》里的问题《算法统宗》是中国古代数学着作之一.书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只.”请您算算这只牧羊人赶的这群羊共有多少只?
22.洗碗(中国古题)有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只.你能从她家的用碗情况,算出她家来了多少客人吗?
23.和尚吃馒头(中国古题)大和尚每人吃4个,小和尚4人吃1个.有大小和尚100人,共吃了100个馒头.大、小和尚各几人?各吃多少馒头?
24.百蛋(外国古题)两个农民一共带了100只蛋到市场上去出卖.他们两人所卖得的钱是一样的.第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”.第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采.”问他们俩人各有多少只蛋?
❽ 找规律的数学题有哪些
找规律的数学题有如下:
一、1、4、5、8、9、()、()。
二、20、18、16、14、12、()、()、()、()。
三、2、5、8、11、()、()、()、()。
四、1、13、2、14、3、15、4、16、()、()、()、()。
五、1、2、4、7、11、()、()、()、()。
六、1,2,4,7,11,16,(22),(29), ——相差为:1,2,3,4,5,6。
七、2,5,10,17,26,(37),(50), ——相差为:3,5,7,9。
八、0,3,8,15,24,(35),(48),——相差为:3,5,7,9。
❾ 数学题的类型有哪些
数学题的类型较多,根据数学的性质及不同情况的类型也有不同。分数如下:
一、按做题分类:
1、填空题。2、选择题。3、应用题。4、综合应用题。5、选作题。
二、按性质分类:
1、数字题。2、代数题(分多类。如:因式分解类、方程类、微积分类、……等)。3、几何题(分多类:如平面几何题、立体几何题、解析几何题、向量几何……等)。
三、按应用范围分类:
1、应用数学类。统计数学类。
❿ 破十法的数学题有哪些
破十法的数学题有如下:
破十法的计算是从减法的意义出发进行思考的,学生通过操作活动,能直观地理解算理、形成算法。可思考过程比较复杂,学生至少需要两步思考—先减再加。相比用数数的方法和想加算减的方法显得比较难理解,主要在于学生已有的数数计算习惯。
减法破十法口诀:减九加一、减八加二、减七加三、减六加四、减五加五、减四加六、减三加七、减二加八。
其他方法:平十法
平十法就是把减数分成两个数,被减数减去第一个数后要等于10,然后再用10来减去第二个数得出最终结果。即平十法。
问18-9,可以这样做:先用18减8,剩10,再减1。
根本原理是,把18看成一个10和一个8,先把8减掉,再动10。18-9,个位8不够减9,所以先把个位的8减完,就变成一个整10了,这时,再用这个10减去1(因为9=8+1),答案就10-1=9。