‘壹’ 初中数学史的相关内容,应该讲些什么
在课标中要求适当地加入数学文化,如在讲解函数时可以适当的引入函数的发展历史,增加学生的学习兴趣。
‘贰’ 世界数学史分为哪四个时期
学术界通常将数学发展划分为以下四个时期:数学形成时期、初等数学时期、变量数学时期、近现代数学时期。
一、数学形成时期;萌芽时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段。这一时期的数学知识是零散的、初步的、非系统的,但是这是数学发展史的源头,为数学后续的发展奠定了基础。
这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
中国历史悠久,发掘出来的大量石器、陶器、青铜器、龟甲以及兽骨上面的图形和铭文表明: 几何观念远在旧石器时代就已经在中国逐步形成。早在五六千年前,古中国就有了数学符号,到三千多年前的商朝,刻在甲骨或陶器上的数字已十分常见。
这时,自然数记数都采用了十进位制。甲骨文中就有从一到十再到百、千、万的十三个记数单位。这说明古中国也形成了数学的基本概念。
二、初等数学时期(公元前600年至17世纪中叶);初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
初等数学时期可以根据内容的不同分成两部分,几何发展的时期(到公元二世纪)和代数优先发展时期(从二世纪到十七进纪)。又可以按照历史条件的不同把它分成“希腊时期”、“东方时期”和“欧洲文艺复兴时期”。
希腊时期正好和希腊文化普遍繁荣的时代一致。希腊是一个文明古国,但是,和四大文明古国巴比伦、埃及、印度、中国相比,在文明史上,希腊文明要晚一段时间。
三、变量数学时期(17世纪中叶至19世纪20年代);变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。它是数学的一个基础学科。
内容主要包括极限、微分学、积分学、方程及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
四、近现代数学时期(19世纪20年代);现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础。代数、几何、分析中的深刻变化为特征。近代数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折。中国近代数学的研究是从1919年五四运动以后才真正开始的。
(2)初中数学数学史有哪些扩展阅读:
历史介绍:
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。
当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
‘叁’ 有关初中数学史上的数学成就和数学家及其着作
1.数学着作《周髀算经》
《周髀算经》应该算是我国更早的一部数学着作,距今已经有两千年左右的历史了。在当时社会的发展经济低下的条件下,人们都是采用用抄写的方式进行学习并且把数学知识传授给下一代的。由此可见《周髀算经》中勾股定理的的问世对人们在进行计算等方式方法上有很大的帮助。那么我国古代有哪些知名的数学着作流传至今呢《周髀算经》可以算的上其中的一部。
2.《九章算数》
《九章算数》也是我国古代有哪些知名的数学着作流传至今中的很重要的一部。其对于我过古代数学以后的发展有着很深远的影响,自从《九章算术》问世以后,一千几百年间以来一直被直接用在数学教育的教科书本里。在一些与中国临近的国家中也都曾经拿它当教科书来教授学生学习数学所以《九章算术》在我国古代数学着作中有着很重要的地位。
3.《宋元算书》
经过从汉到唐一千多年的发展已经形成了独有的特点,在这个基础上到了宋元时期问世的《宋元算书》给了更好的诠释。《宋元算书》其实是一直流传的四大家的数学着作,因其同一个时期出现取得的成就又很高可以在中国古代算是很辉煌的时刻。那么我国古代有哪些知名的数学着作流传至今呢?《宋元算书》也是其中的一个部分。
数学家:
1.贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)着作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是着名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。
2.秦九韶:〈〈数书九章〉〉
3.李冶:《测圆海镜》——开元术
4.朱世杰:《四元玉鉴》
5.祖冲之是我国杰出的数学家,其主要贡献在数学、天文历法和机械三方面。
‘肆’ 数学史研究的内容包括哪些
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。
‘伍’ 初中数学中的数学史
最早是起源于希腊的,高斯阿,欧几里德的几何原本阿…
到了大学就熟悉咯
‘陆’ 数学史的发展大致可以分为几个时期分别有哪些代表人物
1 (前3500-前500)数学起源与早期发展:古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了.
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响.(其中贵族数学是说希腊贵族人研究数学,平民不接触)
‘柒’ 初中数学中涉及到的数学史,如勾骨定理运用赵爽炫图
数学界第一次危机,无理数的出现。
欧几里得《几何原本》关于三角之类的知识
三角函数最早是天文学的分支,由阿拉伯数字家提出
方程思想在我国古代的《算经》中已有涉及