Ⅰ 数学怎么求幂 忘记了。
32^2=1024
(2^5)^2=1024
2^10=1024
1024的算术平法方根可以估算的从30^2=900开始到32就可以了
Ⅱ n咋算求幂的次数,简单数学计算器可以算吗,如何操
(99.9%)^N=95.2%
N=log0.999(0.952)
计算器里不能直接算以0.999为底的对数,所以要用lg或ln来进行一下变换
N=N=log0.999(0.952)=ln0.952/ln0.999=lg0.952/lg0.999=49.165 因为是事件发生次数 所以去整数N=49
Ⅲ 数学中,幂的计算公式还有哪些
还有(ab)^n=a^n*b^n
Ⅳ 矩阵的幂怎么算
有下面三种情况:
1、如果你所要求的是一般矩阵的高次幂的话,是没有捷径可走的,只能够一个个去乘出来。
至于低次幂,如果能够相似对角化,即:存在简便算法的话,在二阶矩阵的情况下简便算法未必有直接乘来得快,所以推荐直接乘。
2、如果你要求的是能够相似对角化的矩阵的高次幂的话,是存在简便算法的。
设要求矩阵A的n次幂,且A=Q^(-1)*Λ*Q,其中Q为可逆阵,Λ为对角阵。
即:A可以相似对角化。那么此时,有求幂公式:A^n=Q^(-1)*(Λ)^n*Q,而对角阵求n次方,只需要每个对角元素变为n次方即可,这样就可以快速求出二阶矩阵A的的高次幂。
3、如果矩阵可以相似对角化,求相似对角化的矩阵Q的具体步骤为:
求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。
依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。
接下来的求逆运算是一种基础运算,这里不再赘述。
下面可以举一个例子:
二阶方阵:
1 a
0 1
求它的n次方矩阵
方阵A的k次幂定义为 k 个A连乘: A^k = AA...A (k个)
一些常用的性质有:
1. (A^m)^n = A^mn
2. A^mA^n = A^(m+n)
一般计算的方法有:
1. 计算A^2,A^3 找规律, 然后用归纳法证明
2. 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A
注: β^Tα =α^Tβ = tr(αβ^T)
3. 分拆法: A=B+C, BC=CB, 用二项式公式展开
适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0.
4. 用对角化 A=P^-1diagP
A^n = P^-1diag^nP
(4)数学中怎么求幂扩展阅读:
幂等矩阵的主要性质:
1.幂等矩阵的特征值只可能是0,1;
2.幂等矩阵可对角化;
3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);
4.可逆的幂等矩阵为E;
5.方阵零矩阵和单位矩阵都是幂等矩阵;
6.幂等矩阵A满足:A(E-A)=(E-A)A=0;
7.幂等矩阵A:Ax=x的充要条件是x∈R(A);
8.A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:
1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=0,且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N(A1)∩N(A2);
2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2=A2·A1=A2,且有:R(A1-A2) =R(A1)∩N (A2);N (A1- A2) =N (A1)⊕R (A2);
3)设 A1,A2都是幂等矩阵,若A1·A2=A2·A1,则A1·A2为幂等矩阵,且有:R (A1·A2) =R(A1) ∩R (A2);N (A1·A2) =N (A1) +N (A2)。
Ⅳ 数学中的幂是什么意思
幂指乘方运算的结果.n^m指将n自乘m次.把n^m看作乘方的结果,叫做n的m次幂.
其中,n称为底,m称为指数(写成上标).当不能用上标时,例如在编程语言或电子邮件中,通常写成n^m或n**m,亦可以用高德纳箭号表示法,写成n↑m,读作“n的m次方”.
当指数为1时,通常不写出来,因为那和底的数值一样;指数为2、3时,可以读作“n的平方”、“n的立方”.
n^m的意义亦可视为1×n×n×n...︰起始值1(乘法的单位元)乘底指数这麼多次.这样定义了后,很易想到如何一般化指数0和负数的情况︰除了0之外所有数的零次方都是1,即n^0=1;幂的指数是负数时,等于1/n^m.
分数为指数的幂定义为x^m/n = n√x^m
幂不符合结合律和交换律.
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用.
编辑本段关于幂的法则
同底数幂:a^nxa^m=a^(n+m);a^n/a^m=a^(n-m)
1.同底数幂的意义
同底数幂是指底数相同的幂
积的乘方:(axb)^n=a^n×b^n;
Ⅵ 高数如何求幂函数1+∑(-1)^n x^2n/2n的和函数
解题过程如下图:
性质
正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);
负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
Ⅶ 求幂是什么意思
你在学校白花钱了!!!
就是这个数的几次乘积的结果~
~
所谓幂数列,一般指数列中各数字之间在等差数列的基础上进行乘方运算后重新进行排列。相对于简单的等差和等比数列来说,乘方值数列及乘方值数列的变式较具有迷惑性,但对其排列的规律进行研究后,仍可以很快地计算分析出数列中待补足项。
例题1: 19,28,39,( ),67,84
a. 50 b. 52 c. 54 d. 56
【解析】答案为b。这是一道平方型数列的变式,其规律是4,5,6,7,8,9的平方后再加3,因此空格内应为7的平方加3,得52。这种在平方数列的基础上加减乘除一个常数或有规律的数列,可以被看作是平方型数列的变式,考生只要把握了平方规律,问题就可以化繁为简了。
例题2:0,7,26,63,()
a.125 b.124 c. 100 d. 99
【解析】答案为b。这道题是立方值数列的变式。经过仔细观察和运算我们仍可以推算出这个数列的通项式为a3-1,得出这一步,这道题就可以说大功告成了。
知道幂数列的通式后求和就容易了,例如例题一、19,28,39,52 ,67,84的求和 s=(4*4+3)+(5*5+3)+(6*6+3)+(7*7+3)+(8*8+3)+(9*9+3)=(4*4+5*5+6*6+7*7+8*8+9*9)+6*3=......
华师一附中高一(16)班的柳智宇的那篇《幂数列求和纵横引论》不容易找到,你可以写信给他本人索取嘛,你说自己也是数学爱好者,愿意和他一起探讨一下这个问题。
Ⅷ 初中数学,求幂,拜托了。