A. 数学建模的七个步骤
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:
明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题
数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。
2、合理假设
作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。
合理假设的作用除了简化问题,还对模型的使用范围加以限定。
作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。
为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。
3、搭建模型
搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。
要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。
用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。
4、求解模型
对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。
不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。
5、分析检验
在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?
数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。
一般误差有以下几个来源,需要小心分析检验:
模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释
数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。
相关阅读
数学模型和数学建模介绍
数学建模常用的
B. 如何用"数学建模"解决实际生活中的问题
(一)、审题弄清题意,这是解答应用题的必要环节。
审题时,提问顺序如下:
(1)这题叙述的是什么地方的什么事?
(2)题目第一个条件是什么?
(3)题目第二个条件是什么?关键词是什么?(离去)
(4)题目第三个条件是什么?关键词是什么?(又来)第二个条件和第三个条件的关键词有什么区别?
(5)问题是什么?
(二)、分析应用题的数量之间关系,确定解题方法。
(三)、列式解答做到仔细认真。
(四)、检验答案的正确性
检验就是对所作出的答案检查验收,检验大体上有以下几方面。
1.列式是否合理,计算是否正确。
2.结果与实际情况是否相符。一般用代入法检验,即把解出的结果作为原题中的未知量,检查它是否符合应用题里给出的数量关系。也可以用不同的解题方法进行计算,看得出的结果是否相同,最后在解完题之后,不能忘了写答句。
C. 描述用数学模型解决实际问题的过程
有关用函数建模的思想从而来解决实际问题的大纲要求至少要在高一,你以前学习的恐怕只能称为应用题。其过程可以简要的概括为:审题--建模--解模--作答。
其中最关键的两步是审题和建模,我认为尤其是审题的这一步,如果单要谈如何审题的话,可能要费力气,你今后学习的过程中,也要不断培养快速.正确审题的能力,因为题目审错,下面的一切将会是毫无意义。经历了高考才懂得平时的审题能力远远不够,导致在考场上,明显感到紧迫,唉,不说了
第二步建模,就是讲问题反映的变量间的关系,选择恰当的函数来列函数关系式,注意,是恰当的函数,可以是一次的.二次的.高次的.三角函数.指数函数.对数函数.幂函数等等,这要根据题目的特点来,选择了恰当的函数,有利与问题的简化,打个比方,销售利润与成本.数量间的关系,一般满足一次函数或二次函数,如果你在建模时,选则对数函数,那很明显,问题将被你复杂化了...将各个变量间满足的关系用函数表达式正确地列出,就完成了建模这一过程。
下面的解模,作答过程,是相对来说比较容易的,但是解答要规范,仔细!
身为一名高三的毕业生,我相信我有这个可以说是经验吧,给你指给路子,浅谈下心得吧。嗯,谢谢给我这个机会!
D. 如何用“数学建模解决实际生活中的问题
首先呢,是将现实问题简单化,具体化,这个过程就需要运用问题假设了.问题简单化后呢,就是运用数学方法建立模型了,这个模型可以是一个数学公式,数学符号,也可以是个图,一个表,然后就是运用软件,matlab或者lingo等等,来进行模型的求解,将问题解决了,那么就可以返回到现实中去,提供一些建议或者想法,供现实参考,这就是整个过程了.其实,国内的几个数学建模竞赛其在现实中的应用没有国际赛的那么紧密,你以后会体会到的.
E. 如何建立函数模型解决实际问题
(1)观察实际情景:
对实际问题中的变化过程进行分析;
(2)发现和提出问题:
析出常量、变量及其相互关系;
(3)收集数据、分析数据:
明确其运动变化的基本特征,从而确定它的运动变化类型;
(4)选择函数模型:
根据分析结果,选择适当的函数类型构建数学模型,将实际问题化归为数学问题;
(5)求解函数模型:
根据实际问题,通过运算推理,求解函数模型; 比如计算函数的特殊值,研究函数的单调性,最值,极大极小值等。
(6)检验模型:
利用函数模型的解说明实际问题的变化规律,达到解决问题的目的.
F. 怎样引导学生建立数学模型解决实际问题
经过多年的课堂教学实践,让我深深体会到数学教育的根本仼务,在于教会学生如何学习、如何应用知识解决实际问题,作为数学教师,应该教育自己的学生学会把实际问题转化为数学问题加以解决,即建立数学模型。也许很多教师都会问:“为什么自己的学生这么笨,解决实际问题的能力这么差”,其实这些问题跟我们平时的教学有很大的关系,正因为我们没有对学生进行建立数学模型的系统训练,没有培养学生的建模意识,因此,学生解决问题的能力得不到提高,影响了学生的学习成绩。所以,本人认为,我们数学教学中的一个重点是培养学生的建模意识,训练学生的建模能力。把实际问题转化为数学问题是绝大多数初中学生的难题,只有在教学中有意识的培养学生的建模思想,才能帮助学生克服这一难题,释放出学习和解决实际问题的强大动力。那如何构造数学模型呢?
一、对数学建模的认知
在课堂教学中,要想培养学生运用数学模型去解决实际应用问题的意识,成功建立起数学模型,就必须让学生首先认知数学模型。数学模型是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。一切数学概念、各种数学公式、方程式、各种函数关系式等都叫做数学模型。
建立数学模型的方法是把实际问题构造成相应的数学模型,通过对数学模型的研究,从而解决问题的一种数学方法,通常分以下三个步骤。
第一,把实际问题的特点进行数学抽象,构造适当的数学模型。
二、数学模型的常见类型
在课堂教学中,我把初中阶段常见的数学模型分为四类:①三角函数、函数模型;②方程、不等式模型;③几何模型;④统计模型。下面以课堂教学中的案例进行分类说明。
三、明确学生数学建模障碍,寻找解决方法
第一,初中数学实际应用问题中,常常有许多其他知识领域的名词术语,由于学生与外界接触较少,对这些名词术语感到陌生,不知其意,从而就无法读懂题,无法正确理解题意,更谈不上解决问题。比如对实际生活中的方向角、坡角、采光度、利率、利息、利润、打折等概念不理解,影响了学生构建数学模型。针对学生此方面的障碍,我通过让学生运用网络平台及教师讲解的两种方式,将这些名词的意思完全弄明白后,教师再分析讲解,从而顺利建立数学模型来解决实际问题。
第二,数学建模方法是利用数学知识和数学方法解决实际问题的一种脑力劳动,许多学生,特别是农村中学生不具备良好的心里品质,所以缺乏对解决实际问题的信心。针对此建模障碍,数学教学中要重视数学应用意识的培养,注重学生各种数学能力的训练,如数学语言、阅读理解等。具体讲,应做好以下几个方面的教学。
1.让学生体验数学,品尝成功的喜悦,着力培养学生的自信心
在平时的教学中,应加强实际问题的教学,使学生从生活中发现数学、创造数学、运用数学,并在此过程中获得足够的自信。例如,教学储蓄存款利息计算方法时,可以组织学生到银行去实地调查,并向学生提出问题:如何选择储蓄存款的期限定利率,假设向银行存款5000元,试计算3年后可得的利息金额,存款方式分别为:①1年定期,每年到期后本息转存;②先存2年定期,到期后本息转存;③3年定期,整存整取。以上几种存款方式,哪种所得的利息最多?请用所学的数学知识讨论所得结论。这次调查使学生突破了对存款利率、利息计算的心理恐惧,并根据调查数据计算出了存款得息最多的方式,且多数学生能用数学原理去解释和说明。从上面的例子可以看出,在教学中要注意联系身边的事物,为学生创造体验数学的机会,就能增强学生数学建模的信心。
2.培养学生阅读理解能力
通过阅读有助于学生探究能力和自学能力的培养,受自身阅读分析能力、数学基础知识掌握程度以及数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来。例如,马航MH370失联后,我国政府积极参与搜救,某日,我国两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.5°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处:①求可疑漂浮物P到A、B两船所在直线的距离;②若救助船A、若救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处。根据课堂调查,学生阅读了以上题目后,问其想到了什么数学知识,建立怎样的数学模型来解决问题,许多学生答不出来。我认为原因在于学生存在把主要语言换成数学语言的转换障碍,从而无法将实际问题建立起数学模型,因此,数学教学必须重视数学阅读,作为数学教师,不仅要重视培养学生的阅读能力,还要交给学生科学有效的阅读方法,使学生认识到数学阅读的重要性。
总之,培养学生解决实际问题的能力,就是培养学生的建模能力,对提高学生学习兴趣,培养创新意识具有重要的作用。我们平时在教学中要加以重视,并给予学生正确的引导。
G. 如何运用数学建模思想解决现实生活问题
首先呢,是将现实问题简单化,具体化,这个过程就需要运用问题假设了。问题简单化后呢,就是运用数学方法建立模型了,这个模型可以是一个数学公式,数学符号,也可以是个图,一个表,然后就是运用软件,matlab或者lingo等等,来进行模型的求解,将问题解决了,那么就可以返回到现实中去,提供一些建议或者想法,供现实参考,这就是整个过程了。其实,国内的几个数学建模竞赛其在现实中的应用没有国际赛的那么紧密,呵呵 你以后会体会到的。
H. 如何用数学建模来解决化学问题
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息.用数学语言来描述问题.
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设.
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具).
利用获取的数据资料,对模型的所有参数做出计算(或近似计算).
模型分析
对所得的结果进行数学上的分析.
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性.如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释.如果模型与实际吻合较差,则应该修改假设,再次重复建模过程.
I. 如何用数学建模解决绩效管理问题
用数学建模解决绩效管理问题事实上应该是利用数学建模来保证最优的解决问题,做出最好的决策。
数学建模被广泛应用于各种工程领域,
是解决在工程中各种问题的利器,
但是数学模型在管理上也有其独特的作用。
运用数学建模,可以使一家公司完美地运转起来,
并实现高效益、低能耗的目的。