Ⅰ 一一对应
这么些感觉的时候也不要了……一一回复一一实现一一解答一一解析一一列出一一对应灬
Ⅱ 小学数学思想方法是什么
1、对应思想方法:对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、比较思想方法:比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
3、符号化思想方法:用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式等。
转化型:
这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。
照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。即使基础较好的学生也只能复杂的方程。
Ⅲ 在数学中什么叫对应思想
简单地说:对应的思想就是用“联系的观点”来看待自然界或社会上的各种变量之间的关系.例如:一天中的某个时刻,对应着某个温度;物体下落在某个高度时会对应它的某个速度,等等.这样将两个变量联系起来.
这也是数学中函数的概念的起源.
Ⅳ 2018初中数学学习方法:“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。
Ⅳ 小学数学中体现的数学思想与方法有哪些
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
Ⅵ *一一对应
“一一对应”是集合论中的一个基本概念。现行的中学数学教材为渗透现代的数学思想和方法引进了“集合一一对应”的概念。
“一一对应”不仅是研究函数的重要工具,还是用来研究计数问题的一种重要方法.实际上,在教材后面的排列组合数计算中已自觉不自觉地用到了这种方法。为了使学生进一步了解和掌握“一一对应”这一基本概念及其应用.我们可以结合教材明确给出“一一对应”的计数方法。所谓“一一对应”计数方法,就是根据两个有限集A与B有“一一对应”的关系,则集合A与集合B的元素个数相同,即计数相同这一性质.假设要计算集合A的计数,但较困难,若能找到集合B,使B与A有“一一对应”的关系,于是只要得到B的计数,A的计数问题也获得了解决.
Ⅶ 一一对应 是一种数学思想还是一种数学方法
“一一对应”思想作为一种重要的数学思想方法,可以把复杂的、抽象的数学知识简单化、
形象化,帮助学生更好地学习数学。
“一一对应”是指该集合元素中具有一个对一个的相呼应的形态,只要能够找到对应的联结点,问题的解决方法就能相应得到。
“一一对应”思想是比较常用的一种数学思想,很多的数学方法均是“一一对应”思想转变而来的。
Ⅷ 常见的数学思想有哪些
1、符号化思想
在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、分类思想
以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、函数思想
函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约,从而了解事物的变化趋势及其运动规律。对于函数,《标准》提出了学生各个学段的要求,结合实验教材,小学中年级的要求是“探索具体问题中的数量关系和变化规律”“通过简单实例,了解常量和变量的意义”。
4、化归思想
“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、归纳思想
研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
归纳法分为不完全归纳法和完全归纳法两种。小学阶段学生接触较多是不完全归纳法。教学四年级上册运算律(以加法交换律和加法结合律为例),就采用了不完全归纳法展开了教学。
6、优化思想
“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
在教学中渗透优化的策略和方法,及时引导学生对各种方法进行评价与反思,通过对各种不同方法的辨析、比较,帮助学生认识不同方法的特点与优势,达到“去伪存真、去粗存精”的目的,培养学生“多中选优,择优而用”的优化意识,构建数学知识,实现对知识的优化和系统化。
7、数形结合思想
数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。
Ⅸ 数学中有哪些概念应用过一一对应
初中阶段的数学中:
1、数由上的点与实数之间是一一对应的;
2、直角坐标系中点的坐标与有序实数对之间是一一对应的;
3、函数中函数值与自变量的取值之间是一一对应的。