1. 离散数学计算层次怎么算出3层4层的! 说详细点! 喷子勿喷!求大神回答!
离散数学2:基本概念
公式层次:单个的命题变项A是0层公式。
如果A是n层公式,B是m层公式,那么¬A是n+1层公式;C=A∧B,C=A∨B,C=A→B,C=A↔B的层次是:max(n,m)+1。
比如(¬(p→¬q) ∧((r∨s) ↔¬q)的层次计算就是:
0 1 0 0 1
2 1 1
3 2
4
4层公式
设p1,p2,p3…pn是公式A中的全部与命题变项,那么给它们各指定一个真值,这就是A的一个赋值/解释。若使A=1,则是成真赋值,否则就是成假赋值。
所以含有n(n≥1)个命题变项的公式有2n个不同赋值。
真值表:把命题公式A在所有赋值下取值情况列成的表。
例:写出(¬p∧q)→¬r的真值表,并求它的成真赋值和成假赋值。
(1)离散数学命题层次怎么看扩展阅读:
学科内容
1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数
2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用
3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数
4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理
5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个着名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一。
它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。
离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。
2. 离散数学
n=max(i,j)表示n取值i和j中较大的那个。例如max(5,8)=8
3. 离散数学问题
上确界的数学定义
有界集合E,如果β满足以下条件
(1)任意X属于E,β>X.
(2)对任意ε>0,始终存在Xn
属于E,使得β-ε<Xn.
则称β为集合E的上确界(同理可知下确界的定义)
对于函数y=f(x),在使f(x)大于等于M成立的所有常数M中,我们把M的最大值M’叫做函数y=f(x)的下确界。
下确界:在所有那些下界中如果有一个最大的下界,就称为M的下确界
设<math>(A, \leq)</math>是偏序集,<math>B \subseteq A</math>,<math>y \in B</math>,若对于所有的<math>x \in B</math>,<math>y \leq x ~\implies~x = y</math>,则称<math>y</math>为<math>B</math>的极大元。
请注意极大元和最大元的区别。最大元是<math>B</math>中最大的元素,它与<math>B</math>中其它元素都可比;而极大元不一定与<math>B</math>中其它元素都可比,只要没有比它大的元素,它就是极大元。对于有穷集合<math>B</math>,极大元一定存在,但最大元不一定存在。最大元如果存在一定是唯一的,但极大元可能有多个。
设<math>(A, \leq)</math>是偏序集,<math>B \subseteq A</math>,<math>y \in B</math>,若对于所有的<math>x</math>,<math>x \in B~\implies~x \leq y</math>,则称<math>y</math>为<math>B</math>的最大元。
请注意最大元和极大元的区别。最大元是<math>B</math>中最大的元素,它与<math>B</math>中其它元素都可比;而极大元不一定与<math>B</math>中其它元素都可比,只要没有比它大的元素,它就是极大元。对于有穷集合<math>B</math>,极大元一定存在,但最大元不一定存在。最大元如果存在一定是唯一的,但极大元可能有多个。
请采纳。
4. 离散数学 n层公式,中间易知的两个式子分别为3层和4层怎么得出来的
离散数学2:基本概念公式层次:单个的命题变项A是0层公式。如果A是n层公式,B是m层公式,那么¬A是n+1层公式;C=A∧B,C=A∨B,C=A→B,C=A↔B的层次是:max(n,m)+1。比如(¬(p→¬q)∧((r∨s)↔¬q)的层次计算就是:01001244层公式设p1,p2,p3…pn是公式A中的全部与命题变项,那么给它们各指定一个真值,这就是A的一个赋值/解释。若使A=1,则是成真赋值,否则就是成假赋值。所以含有n(n≥1)个命题变项的公式有2n个不同赋值。真值表:把命题公式A在所有赋值下取值情况列成的表。例:写出(¬p∧q)→¬r的真值表,并求它的成真赋值和成假赋值。pqr¬p¬p∧q¬r(¬p∧q)→¬所以成假赋值为011。000,001,010,100,101,110,111为成真赋值。如果A在所有赋值下均为真,则A是重言式或永真式,如果所有赋值下均为假,则为矛盾式或永假式。如果A不是矛盾式,那A就是可满足式。如果A是可满足式,那么A至少有一个成真赋值。如果A是可满足式,而且有至少一个成假赋值,则A是非重言式的可满足式。(真值表最后一列全1则为重言式,全0则为矛盾式,至少有1个1,则为可满足式)命题逻辑等值演算如果A和B构成的A→B是重言式,那么A与B是等值的,记作A⇔B。可以用真值表确定A↔B是不是重言式,来判断A是否与B等值,也可以判断A与B的真值表是否相同来确定A⇔B还是A⇎B。16组常用的重要等值式模式:1、A⇔¬¬A2、A⇔A∨A,A⇔A∧A3、A∨B⇔B∨A,A∧B⇔B∧A4、(A∨B)∨C⇔A∨(B∨C),(A∧B)∧C⇔A∧(B∧C)5、A∨(B∧C)⇔(A∨B)∧(A∨C),A∧(B∨C)⇔(A∧B)∨(A∧C)分配率6、¬(A∨B)⇔¬A∧¬B,¬(A∧B)⇔¬A∨¬B7、A∨(A∧B)⇔A,A∧(A∨B)⇔A吸收率8、A∨1⇔1,A∧0⇔09、A∨0⇔A,A∧1⇔A10、A∨¬A⇔111、A∧¬A⇔012、A→B⇔¬A∨B13、A→B⇔(A→B)∨(B→A)14、A→B⇔¬B→¬A15、A↔B⇔¬A↔¬B16、(A→B)∧(A→¬B)⇔¬A分类:数学
5. 浅谈怎样学习离散数学中的命题逻辑
浅谈怎样学习离散数学中的命题逻辑
为了解决用户可能碰到关于"浅谈如何学习离散数学中的命题逻辑?"相关的问题,志乐园经过收集整理为用户提供相关的解决办法,请注意,解决办法仅供参考,不代表本网同意其意见,如有任何问题请与本网联系。"浅谈如何学习离散数学中的命题逻辑?"相关的详细问题如下:
首先要学好基本概念,每一章都有一些概念需要弄清楚、理解确切并且记住。第二要牢记基本公式,所有公式都应该记住,通过逐步推导和反复运用将公式记住。第三要重复学习思考,通过重复学习真正掌握有关基本内容。第四要独立完成作业,独立完成作业是学习的重要手段,必须通过做作业来加深对基本概念的理解,熟悉公式的运用,掌握基本解题方法,从而达到掌握基础知识、提高数学能力的目的。
6. 离散数学入门,请问大佬,这里的命题怎么理解
“我们都是好学生”的反命题是 “我们不都是好学生”。
注意细微的差别。
“我们不都是好学生”说明我们中有坏学生,但是也可能有好学生。
“我们都不是好学生”说明我们中没有好学生。
7. 离散数学中的命题是什么意思 解释下
下面是有关命题的定义及基本解释。自己好好理解一下命题概念学习本章首先要深刻理解命题的概念。理解原子命题与复合命题的关系,在了解复合命题的基础上,理解联结词的定义。
命题:具有唯一真值的陈述句称为命题,又简称语句。注意,这里有两个条件,首先它是一个陈述句,其次,它具有唯一的一个真值。
真值:就是语句为真或假的性质。一个语句的真值可以为真也可以为假。真值不是说该语句的值必为真。
任一命题必有其真值,也称这个命题的值。既然是命题了,那它必有一个确定的真值,不管这个真值为真还是为假。当一个陈述句能够分辩其值的真假时(也就是说,总可以肯定是其中的某一个),它就是命题,即使我们不知道它是真还是假。
另外要理解命题常量、命题变元及指派的含义。
复合命题就是一些原子命题经过一些联结词复合而成的命题。常用的联结词有:(1)否定、(2)合取、(3)析取、(4)条件、(5)双条件
复合命题与联系词是密切相关的,不包含联结词的命题就是原子命题,至少包含一个联结词的命题才是复合命题。
复合命题的真值只取决于构成它们的各原子命题的真值,而与它们的内容含义无关。对联结词所联结的两原子命题之间有无关系无关。(这一条很重要,因为一个命题用自然语言表达时,我们往往会受到自然逻辑的影响,比如"我如果不上班,那么天下雨"这种命题,在自然的逻辑里,是不成立的,一个人不上班怎么会导致天下雨呢? 但是在这里,这个复合命题的值实际上是由两个原子命题的真值决定的,与它的含义无关,这个复合命题是|P->Q ,前一个原子命题的真值为假,后一命题值为真,根据条件的定义,这个复合命题值为真)
∧、∨、←→具有对称性,|、→无对称性,(教材提示,也可用iff表示双向箭头←→,由于字符集的限制,本网页在表示否定关联词时用"|",请在书写时注意规范写法。对称性是指真值表中复合命题的真值与原子命题的真值之间的关系。)
命题公式与命题不同,在一个由命题标识符组成的式子中,如果标识符表示确定的命题,则该式就是命题。如果标识符只表示命题的位置,可由任何命题代替,则该式子就为命题公式。命题变元P用特定命题替代时,称为对P的指派。
不是所有由命题变元、联结词及有关括号组成的字符串都能成为命题公式。要成为一个命题公式(合式公式),应当符合规定。这个规定是:
(1)单个命题变元本身是一个合式公式。
(2)如果A是合式公式,那么|A是合式公式。
(3)如果A和B是合式公式,那么(A∧B)、(A∨B)、(A→B)和(A←→B)都是合式公式。
(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元、联结词和圆括号的符号串是合式公式。
总的理解就是说,单个命题变元是合式公式,由合式公式作为命题变元,有限次地运用联结词及括号组成的符串才能是合式公式。即命题公式,简称公式。
命题变元只有进行指派后才可能确定其所在命题公式的真值。当一个命公式中的所有命题变元用一组真值指定后,就称为对命题公式的指派。想一想,什么是真指派、什么是假指派? 这个比较简单。
一个命题的真值表应该列出其所有指派的取值情况。一般来说,由n个命题变元组成的命题公式共有2n种真值情况。
联结词的简化,按照两个等价的命题公式,可以看到一个有较多联结词的公式可以简化为含有一个联结词的公式。这里有两个等值公式应当记一下:
(|P∨Q)<=>(P→Q)
我们要弄清什么是"重言式(永真式)"、什么是"矛盾式(永假式)"以及"可满足式"。这其中涉及到指派及命题公式的取值,容易理解。
8. 【离散数学】命题公式的类型分为哪几类呀
是,可以分为三类:永真式、可满足式和矛盾式。