A. 数学思想 数学思想方法 数学方法 以上三个到底有什么区别
所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
B. 知识,数学方法,数学思想之间到底有什么区别和联系
一是“明线”的数学教育
即数学知识的教学,教师和学生直接从直观的角度去学习具体的数学知识;
二是“暗线”的数学教育
即数学思想方法的教学,我们初步掌握好数学知识,通过例题学习等手段掌握好方法技巧,再进一步领悟和掌握数学思想。因此,数学思想要高于数学知识和数学方法技巧,属于更高层次的数学学习。数学知识是数学思想方法的载体,而我们在运用数学知识和方法技巧解决问题时候,那么数学思想就是处于指导性的地位。
C. 什么是数学思想有几种,数学思想是否可以分为能力与方法两种
所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
1.函数思想:
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。
2.数形结合思想:
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3.分类讨论思想:
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。
4.方程思想:
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
另外,还有归纳类比思想、转化归纳思想、概率统计思想等数学思想,例如利用归纳类比思想可以对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。
另外,数学方法即不是能力也不是方法,但它是用来指导方法的.
D. 数学思想·数学方法有哪些
1
、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,
小学数学一般
是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)
与表示具体的数是一一对应。
2
、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,
然后按照题中的已
知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确
答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可
以使要解决的问题更形象、具体,从而丰富解题思路。
3
、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手
段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量
变化前后的情况,可以帮助学生较快地找到解题途径。
4
、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数
学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量
之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表
达大量的信息。如定律、公式、等。
5
、类比思想方法
类比思想是指依据两类数学对象的相似性,
有可能将已知的一类数学对
象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换
小学各年级课件教案习题汇总
一年级二年级三年级四年级五年级
律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比
思想不仅使数学知识容易理解,
而且使公式的记忆变得顺水推舟的自然
和简洁。
6
、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,
而其本身的大小
E. 小学数学方法和数学思想是同一概念吗
不是,数学方法是数学思想的一部分。
数学思想包括数学方法。
F. 数学方法,数学思想之间到底有什么区别和联系
一是“明线”的数学教育
即数学知识的教学,教师和学生直接从直观的角度去学习具体的数学知识;
二是“暗线”的数学教育
即数学思想方法的教学,我们初步掌握好数学知识,通过例题学习等手段掌握好方法技巧,再进一步领悟和掌握数学思想。因此,数学思想要高于数学知识和数学方法技巧,属于更高层次的数学学习。数学知识是数学思想方法的载体,而我们在运用数学知识和方法技巧解决问题时候,那么数学思想就是处于指导性的地位。
G. 什么是数学思想与方法
数学思想方法是指人们对数学理论和内容的本质的认识,数学思想方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题.常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合.
H. 简述数学思想、数学方法和基本数学思想之间的联系和区别
学思想方法和基本数学之间的联系,他们是相辅相成的,但是方法是解决问题的关键所在,思想是指导
I. 有谁知道数学的思想与数学思维的区别
数学思维,是在表象、数学概念的基础上进行分析、综合、判断、推理等认识活动的过程。
数学思想是数学方法的概括。
J. 数学思想和数学方法的区别与联系 Microsoft Word 文档
数学思想方法是从方法论的角度对数学思想进行探索、论证,从而形成科学、发展的数学思想,数学思想对数学思维起到统摄、组织的作用,数学思维的成型就形成了数学方法。