A. 如何培养孩子的数学逻辑思维能力
一、做出来不如讲出来,听得懂不如说得通。
做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、图形推理是培养逻辑思维能力最好的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
B. 什么是数学思考,如何培养学生的数学思考
数学教学也就是数学语言的教学。同一堂课,不同的教师教出来的学生,接受程度也不一样,这主要取决于教师的语言水平。
尤其是数学课堂教学,要学生接受和理解枯燥、抽象的数学知识,没有高素质语言艺术的教师是不能胜任的。
鉴于此,结合学生的认知特点、兴趣爱好、心理特征等个性心理倾向,将数学语言生活化是引导学生理解数学、学习数学的重要手段。
数学思维拓展训练特点:
1、全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,
2、通过思维训练的数学活动和策略游戏,对思维的广度、深度和创造性方面进行综合训练。
3、根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。
4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。
5、为解决幼小衔接的难题而准备。
C. 在小学数学教学中怎样培养学生的推理能力
小学生在数学课上学习一点有关推理的知识,是《课标》指定的一个重要的教学内容。《数学课程标准》中指出:“推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人学习和生活经常使用的思维方式。推理一般的包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。在小学阶段,主要学习合情推理,即归纳推理和类比推理。而归纳推理又多表现为不完全归纳推理”。数学推理,是从数和形的角度对事物进行归纳类比、判断、证明的过程,它是数学发现的重要途径,也是帮助学生理解数学抽象性的有效工具。在小学数学教学中,如能重视强化学生的推理意识,培养学生的推理能力,既有利于帮助学生形成言必有据一丝不苟的良好习惯,也有利于学生掌握科学的思维方法,促进已有知识、经验、技能的有效迁移,提高学生的学习效率。在小学数学教学中如何培养小学生的推理能力?下面谈谈我在教学中的一些体会。
一、在小学数学教学中,要让学生说理,养成学生推理有据的好习惯
语言是思维的外壳,组织数学语言的过程,也是教给学生如何判断的推理过程,而与语言最密不可分的是演绎推理,小学生解题时大多是不自觉地运用了演绎推理,因此教学中教师必须追问为什么,要求学生会想、会说推理依据,养成推理有据的习惯,例如:14和15是不是互质数时一定要学生这样回答:公因数只有1的两个数叫做互质数,因为14和15
只有公因数1,所以14和15是互质数。这样运用演绎推理方法,经常进行说理训练,有利于培养学生的演绎推理能力。
二、教给学生正确的推理方法
小学生学习模仿性大,如何推理、需要提出范例,然后才有可能让学生学会推理。小学数学中不少数学结论的得出是运用了归纳推理,教学时就要有意识地结合数学内容为学生示范如何进行正确的推理。例如,在教乘法交换律时,我是这样引导学生学习的,计算多组算式:5×3=15、3×5=15所以5×3=3×5还有:15×4=4×15引导学生观察、分析,找出这些算式的共同点:左、右两边因数相同,交换因数的位置积不变,归纳出乘法交换律。
三、要把培养学生的推理能力贯穿在日常的数学教学中
能力的发展决不等同于知识技能的获得。知识可以用“懂”来描述,技能可以用“会”来描述,都可以立竿见影。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。这种“悟”只有在数学活动中才能得以进行,因此教学活动必须给学生提供探索交流的空间,组织、引导学生经历观察、实验、猜想、验证等数学活动过程,并把推理能力的培养有机地结合在这一过程中。例如;在讲《分数的初步认识》这一课时时,学生在认识了二分之一,三分之一,四分之一……这些分数后,提出问题:二分之一和三分之一哪个分数大?先让学生说出自己的的猜想,接着验证:取两张相同的纸片,一个折出二分之一,另一个折出三分之一,再比较大小,一目了然,二分之一大于三分之一。接着再推理三分之一和四分之一哪个分数大?从而得出结论:分子为一的分数,分母小的分数大。这样再完成教学任务的同时,不知不觉中培养了学生的推理能力。
四、要把推理能力的培养植根于学生熟悉的生活实践中
要想促进学生推理能力更好地发展,除了书本知识外,还有很多活动能有效地发展学生的推理能力,例如:①大树与影子有什么关系,成什么比例,计算糖水里含糖量可能用什么比例解答,在解答之前,要用变化规律进行猜想,得到合情推理,再进行验证。②用举反例的方式证明结论不成立,如给小明家打电话,若多次接通但无人接听,则由此得出“小明不在家”的判断。③开展一些有趣的游戏或活动,培养学生的推理能力,如分圆比赛,就能得出“圆的周长与∏有关系”这一结论。
五、把推理能力的培养落实到《数学课程标准》的四个内容领域之中
“数与代数”、“空间与图形”、“统计与概率”、“实践与综合运用”这四个领域的内容都为发展学生的推理能力提供了很好的平台。
1、在“数与代数”中培养学生的推理能力
在“数与代数”的教学中.计算要依据一定的“规则”公式、法则、推理律等.因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:学习20以内进位加法时,让学生自主探索8+7=?,孩子们想出很多方法算出得数,有一个孩子说,我知道10+7=17,那么8+7=15,这个孩子就是很好地进行了推理,在过去一律用“凑十法”的情况下,是不会出现这种情况的,培养了学生的推理能力。
在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生的推理能力。
2、在“空间与图形”中培养学生的推理能力
在“空间与图形”的教学中.既要重视演绎推理.又要重视合情推理。小学数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。
3、在“统计与概率”中培养学生的推理能力
统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。
概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。
4、在学生熟悉的生活环境中培养学生的推理能力
教师在进行数学教学活动时,如果只以教材的内容为素材对学生的合情推理能力进行培养,毫无疑问,这样的教学活动能促进学生的合情推理能力的发展。但是,除了学校的教育教学活动(以教材内容为素材)以外,还有很多活动也能有效地发展学生的推理能力。例如,人们日常生活中经常需要作出判断和推理,许多游戏中也隐含着推理的要求。所以,要进一步拓宽发展学生推理能力的渠道,使学生感受到生活、活动中有“数学”,有“推理”,养成善于观察、猜测、分析、归纳推理的好习惯。
在实践活动这部分内容中,同样也可以培养学生的推理能力,如:“估计这本书有多少字”这一实践活动来说,学生要选择具有代表性的一页,利用自己已有的知识,计算出一页的字数,然后推算出这本书的字数,由此可见,我们要充分利用四个部分的内容,培养学生的推理能力,促进学生的全面发展。
六、把推理能力的培养置于层次性和差异性的关注中
我们面对的教育对象是第一、二、三学段的小学生,从层次上目标要求不同。第一学段要求在教师的帮助下,初步学会选择有用的信息进行简短的归纳、类比。第二学段则要求能根据解决问题的需要,搜集有用信息,进行归纳、类比与猜测,发展初步的合情推理能力。第三学段要求能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测;能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。因此,我们在培养学生的推理能力时一定要把握其层次性。另外,学生的思维也存在着一定的差异,我们要把握一定的“度”,让不同的学生得到不同的发展,因人施教,因材施教,使学生的推理能力不断跃上新台阶。
总之,数学教学中对学生进行推理能力的培养,对于老师,能提高课堂效率,增加课堂教学的趣味性,优化教学条件、提升教学水平和业务水平;对于学生,它不但能使学生学到知识,会解决问题,而且能使学生掌握在新问题出现时该如何应对的思想方法。在小学数学教学中,做为一名数学教师,应抓住时机,根据教材内容和学生的差异,设计恰当的教学内容,有的放矢地进行推理能力的训练。让学生积极的参与数学活动,体会数学知识的形成过程,让学生感悟到推理的方法和效能,充分展现学生想象能力,抽象能力,发展学生的数学思维能力。
D. 如何培养学生的数学思维方法
一、培养数学思维的严谨性
思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。
首先要求学生要按步思维,思路清晰,就是要按照一定的逻辑顺序进行思考问题。特别在学习新的知识与方法时,应从基本步骤开始,一步一步深入。
其次要求学生要全面、周密地思考问题,做到推理论证要有充分的理由作根据。运用直观的力量,但不停留在直观的认识上;运用类比,但不轻信类比的结果;审题时不但注意明显的条件,而且留意发现那些隐蔽的条件;应用结论时注意结论成立的条件;仔细区分概念间的差别,弄清概念的内涵和外延,正确地使用概念;给出问题的全部解答,不使之遗漏。
二、培养数学思维的深刻性
思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。在数学学习中经常有学生对结论不求甚解,做练习时照葫芦画瓢,根本无法领会解题方法的实质,离开书本和老师就无法独立解题。这种现象正是学生在长期的学习中缺乏思维深刻性的表现。要克服这一现象,必须有意识地经常进行思维的深刻性训练。
1、透过现象看数学本质
能否透过表面现象,洞察数学对象的本质及联系,是思维深刻与否的主要表现。很多的数学问题,条件关系比较隐蔽,如果只看问题的表面,是无从下手的。因此在数学学习中,要进行由表及里的思索,抓住问题的本质和规律。
例1:商店有红气球17个,红气球比黄气球少9个,花气球的个数是红气球的3倍,花气球有多少?
分析:一个应用题含有两个未知的数量,一般情况下是不可求解的,但本题却要求花气球的个数,显然该应用题中可以转变为只含一个未知数量(花气球数量)的应用题。即红气球的个数可先由已知条件求出,这样透过现象,看到了问题的本质,明确了转变的方向。
解:(1)红气球有多少个?
17-9=8(个)
(2)花气球有多少个?
8×3=24(个)
答:花气球有24个。
2、注意审题认真和防止思维定势
学生在用某种思维模式多次解决同类问题而形成思维定势之后,再遇到相类似的新问题时,往往会表现出机械套用以前思维模式的倾向,而且同一方法使用次数越多,这种倾向就越明显。
例2:动物园里养了45只八哥、32只黄莺,养的黄莺和孔雀的总数比八哥少8只,养了几只孔雀?
由于习惯上常把黄莺和八哥的个数相加得两种鸟的总数,不少学生把此题中黄莺和孔雀的总数误认为是黄莺和八哥的总数,在解题时出现了错误。要克服学生这种思维定势,可以在平时的作业、练习中多培养学生多观察、多思考、多分析。另外,有意识安排适当反例,引诱学生上当,让学生吃一堑长一智。
三、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
例如,求一个长方形的周长,既可以用四条边相加的方法计算,也可以分别先算出两条长、两条宽的长度再相加,更简便的可以先把长和宽先加起来再乘以2,得出结果。
四、培养思维的灵活性
思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响,善于从旧的模式或通常的制约条件中摆脱出来。养成学生数学思维的严谨性、深刻性和广阔性,但是没有发展思维的灵活性,就有可能使思维倾向于某种具体的方法和方式,片面地追求分析问题和解决问题的程式化或模式化,产生思维的惰性。
灵活的思维表现为针对知识的运用自如,善于变通和调整思路,善于运用辨让思想进行具体问题具体分析是思维灵活性的重要表现。
例3:用简便方法计算242-97+55
分析:这是一道加减法综合计算题,用常规方法进行简便计算的话,解法如下:
242-97+55
=242-100+3+55
=142+3+55
=145+55
=200
在计算中只第一步显示比较方便,在其他步骤中并没有体现出太大优势。如果我们从另一个角度入手,把97进行不同的分解,有如下解法:
242-97+55
=242-42-55+55
=(242-42)-(55-55)
=200
由此可简便求出最后结果。
这种需要打破常规解法的题目,是训练思维灵活性的好办法。除此以外,传统的一题多解也是训练思维灵活性的好办法。
E. 如何培养学生的的数学推理能力
把推理能力的培养有机地融合在数学教学的过程中。能力的发展绝不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,他不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。这种“悟”只有在数学活动中才能得以进行,因而教学活动必须给学生提供探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把推理能力的培养有机的融合在这样的“过程”之中。任何试图把能力“传授”给学生,试图把能力培养“毕其功于一役”的做法,都不可能真正取得好的效果。
在“数与代数”的教学中.计算要依据一定的“规则”—公式、法则、推理规律等.因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。再如:求绝对值|-5|=?
|+5|=?|-2|=?
|+2|=?
|-3/2|=?
|+3/2|=?从上面的运算中,你发现相反数的绝对值有什么关系?并作出简捷的叙述。通过这个例子,教学可以培养学生的合情推理能力,再结合数轴,可以让学生初步接触数形结合的解题方法,并且让学生了解绝对值的几何意义。
在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。
F. 如何培养学生的数学逻辑思维
逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,也是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。在本文中,笔者将结合教学实践,就在小学数学教学过程中培养学生的逻辑思维能力的几个重点环节谈谈自己的看法。
一、要重视思维过程的组织
要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。具体而言,教学中加强思维过程的组织要做好以下几个方面:
首先,要为学生提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显着特征。随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学过程中,教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学有余数的除法时,可先演示把“10个苹果放在2个盘子里”,然后顺序演示把“9个、8个、7个苹果放在2个盘子里”。在这一过程中,注意引导学生观察盘子里和盘子外苹果的数量,并比较盘子外的苹果个数与盘子个数的大小。学生后发现商是盘子里的苹果的个数,余数是盘子外的苹果个数,还会发现盘子外的苹果个数比盘子的个数要少。这样他们就会知道,余数要小于除数。这种抽象概括过程的展开,完全依赖于“观察----思考”过程的精密组织。
其次,要指导积极迁移,推进旧知向新知转化的过程。数学教学的过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移、推进旧知向新知转化的过程,也是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着。数学教学的目的之一就是挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学平行四边形面积的计算公式时,要唤起学生对“长方形面积的计算公式的推导过程”、“图形的旋转平移”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生学习小数加减法,要在教学整数时就帮助学生理解加法和减法的意义。
再次,要强化练习指导,促进学生实现从一般到个别的运用。学生学习数学时、了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,练习设计要力求巧妙:一是要加强基本练习,注重基本原理的理解;二是要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三是要针对易混易错的知识设计对比练习,使学生获得更为具体更为精确的认识;四要加强实践操作练习和体验学习,帮助学生把人的情感投入到学习中去,具体途经有:有目的的观察、测量、作图、试验与操作等;五要根据学生思维特点设计变式练习。
第四,要指导学生进行分类和整理,促进思维的系统化。教学中,教师要注意指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,使学生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。
二、要重视思维能力的培养
一是要注意思维训练要从起步时做起,从小学一年级开始,教师的数学教学过程中就应当有意识地培养学生的思维能力;二是要帮助学生牢固掌握数学概念,特别是加、减、乘、除法的意义,分数、小数的意义及一些与之有关的基本性质;三是要在游戏中促进学生思维能力的发展,通过设计灵活多样的游戏,激发学生的学习兴趣;四是要加强语言训练,要让学生用不同的叙述方法来叙述,例如要让学生准确地掌握增加、减少、降低、提高、节约等数学用语;五是要巧妙设计练习,既能够实现教学目标,又能够培养学生的好奇心,激发其学习的主动性和自觉性。
三、要重视寻求正确思维方向的训练
首先,要指导学生认识思维的方向问题。我们都知道,逻辑思维具有多向性。一般而言,包括以下几种情况:
一是顺向性。这种思维方式是以问题的某一条件与某一答案的联系为基础进行的,即在思维时直接利用已有的条件,通过概括和推理得出正确结论,其方向只集中于某一个方面,对问题只寻求一种正确答案。
二是逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。
三是横向性。这种思维方式是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。
四是散向性,即发散思维。这种思维方式的特点是从不同的角度、方向和侧面进行思考,进而产生多种、新颖的设想和答案。
其次,要指导学生掌握寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点:
一是要精心设计思维感性材料。思维的感性材料,就是指以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质数、合数概念时,可以先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可以“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。
二是要依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,这时应当怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。
三是要联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。
四是反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。
四、要重视对良好思维品质的培养
思维品质如何会对思维能力的强弱产生直接影响,因此培养学生逻辑思维能力必须重视良好思维品质的培养。在这方面,要重点抓好以下几个环节:
一是要培养思维的敏捷性和灵活性。思维灵活是思维的灵魂,教学中要充分重视教材中例题和练习中“也可这样算”、“我这样算”“看谁算得快”、“怎样算简单就怎样算”、“我发现”我还发现“等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。
二是要培养思维的广阔性和深刻性。在教学过程中,教师如果注意沟通知识之间的联系,就可以培养思维的广阔性和深刻性。例如,在教学分数应用题时可以启发学生联想倍数应用题,教学百分数应用题时可以启发学生联想起分数应用题。通过这种训练,可以调整和完善学生头脑中的认知结构:从几倍的“几”到几分之几的“几”,再到百分之几的“几”,使之连成一个整体。不仅可以培养学生思维的广阔性,而且可以培养思维的深刻性。
三是要注意培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如,教材的例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即适当放手或完全放手,让学生自己去思考、去操做,以便培养他们思维的独立性。教学中还要重视从直观形象入手,充分调动学生的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养思维的创造性。
G. 如何在小学数学课堂中培养学生的逻辑思维能力
一.培养学生数学抽象能力
学生之所以感觉数学难学,归根结底就是学生缺乏数学抽象能力。传统教学中老师直接告诉学生抽象出的结论是什么,而没有让学生参与抽象的过程,导致死记硬背。因此教师要发挥主导地位,引导学生通过现象观察出本质,理解“抽象” ,学会归纳总结。让学生自己形成数学命题,数学思想,老师加以指正和完善,长期以来,学生会有独立自主学习知识的能力。
二.培养学生逻辑推理能力
思考人类历史上的每一次创新与发现,都离不开归纳,类比。在课堂教学中,大量使用类比,介绍人类的重大发明与数学中逻辑推理的关系,充分情景教学,培养学生学习数学的兴趣,这就要求学生大胆的发现和提出命题,他们的有些想法在不久的将来就是新的发明创造,就是定理公理;同时数学推理的精华在于演绎推理,着名的三段论构成了数学的知识体系,公理,定理,推论的证明方式大部分是三段论,演绎推理是现代文明的奠基石,在告知学生三段论的推理方式下,放手让学生去推理,掌握推理的基本形式和规则,正确书写推理的步骤,因果明确,书写具有逻辑顺序, 探索和表述论证的过程; 构建命题体系,同时学以致用,用逻辑推理解决数学和生活中的问题。
三.培养学生数学建模能力
要求学生必须做到发现和提出问题, 利用已知知识建立模型; 求解模型; 检验结果和完善模型。 通过数学建模可以培养学生动手操作能力,对知识的理解程度,达到学以致用,理论与实际相结合。体现数学来源于生活并将应用于生活,数学建模是新课标必须的要求,是理论与实际结合的重要体现,使得学生达到学以致用,在平常教学中,要求学生平时注意搜集模型和资料,注重归类,长期为数学建模准备素材,有备无患。
四.培养学生直观想象能力
学生直观想象能力的培养要通过动手来完成。如我们在立体几何,平面几何教学中,鼓励学生先自己做出模型,这样我们再展现几何图形时,学生便不再陌生,也能找到点,线,面之间的位置关系,成功避开了生硬讲解,达到事半功倍的效果。同时要求学生在生活中注重观察,百闻不如一见,在脑海中形成一些数学直观模型,感受数学之对称美,曲线美。培养学生的想象能力,能有机的结合数与形。因此在教学过程中引导学生用想象的观点看待问题,富余想象,大胆想象,让学生在课堂上放的开,不在以传统的模式约束学生,培养新时代富有想象力的人才。
五.培养学生数学运算能力
数学中的代数部分,总的来讲就是在集合上定义加减乘除及相关运算,形成代数体系和相关结论,这就要求学生理解运算,掌握运算法则,探索运算思路,设计运算程序进行运算。运算是演绎推理的重要组成部分,是人类文明传承的工具,是严谨求实的科学精神的培养手段。让学生充分感知运算的创造性,当今很多程序的实现都是大数据的处理都是在进行运算,取值,自己具有较高的运算能力,才能识别这些程序。这是时代的呼唤,顺应历史发展要求。
六.培养学生数据分析能力
当今世界云计算,大数据处理等等日新月异的成果都与数据是离不开的。如今的竞争也就变成时间的竞争,容量的竞争,优胜劣汰,这就要求学生具有数据获取,数据分析,知识构建的能力。目前我们所在的时代为多元化信息时代,这就要求人类必须有处理信息和数据的能力,才能使得计算机技术更好地服务于人类。平时让学生注重数据的搜集,整理,归类,可以培养学生在这方面的能力,从点滴做起,终将铸成大的成就。