㈠ “数学问题解决能力”与“解决数学问题能力”有什么区别!!
不是指解决实际问题的能力。解决问题有很多种的情况,比如说简单的解决表面上的问题。没有很好的从思维上想到解决的方法。而数学问题解决能力是一种思想的灵活运用。说的是方法问题!
㈡ 数学七大能力包括哪些
数学七大能力包括:抽象概括能力、空间想象能力、推理论证能力、运算求解能力、数据处理能力、应用意识、创新意识
具体释义:
1、抽象概括能力
抽象是指舍弃事物非本质的属性,揭示其本质属性:概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程。抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论。
抽象概括能力是对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断。
2、空间想象能力
能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地解释揭示问题的本质。
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图像的想象能力。识图是指观察研究所给图形中几何元素之间的相互关系。
画图是指将文字语言和符号语言转化为图形语言 以及对图形添加辅助图形或对图形进行各种变换。对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志。
3、推理论证能力
推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论的一连串的推理过程,推理既包括演绎推理,也包括合情推理:论证方法及包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法。一般运用和情推理进行猜想,再运用演绎推理进行证明。
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力。
4、运算求解能力
会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运输途径,能根据要求对数据进行估计和近似运算。
运算求解能力是思维能力和运算技能的结合。运算包括对数学的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。
运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力。
5、数据处理能力
会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。数据处理能力主要依据统计案例中的方法对数据进行整理、分析,并解决给定的实际问题。
6、应用意识
能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题。
能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明。 应用的主要过程是依据现实生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。
7、创新意识
能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考,探究和研究,提出解决问题的思路,创造性地解决问题。
创新意识是理性思维的高层次表现,对数学问题的”观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识越强。
(2)什么叫数学解决问题的能力扩展阅读
数学思维与数学思维能力的培养:
1、数学思维概述数学思维:
指在数学活动中的思维,是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一定思维规律认识数学内容的内在理性活动。它既具有思维的一般性质,又有自己的特性。最主要的特性表现在其思维的材料和结果都是数学内容。
2、数学思维的分类:
集中思维与发散思维:集中思维是朝着一个目标、遵循单一的模式,求出归一答案的思维,又称为求同思维;发散思维则表现在解决问题时,能根据已提供的条件,利用已有的知识经验,从多个方向、不同途径去探索思考,以寻求新的解决问题和途径和方法,发散思维又称为求异思维。
再造性思维与创造性思维:再造性思维是指原有的经验和已经掌握的解题方法、策略,在灯似的情境中直接解决问题的思维方式。创造性思维是指在强烈的创新意识的指导下,指导头脑中已有的信息重新加工,产生具有进步意义的新设想、新方法的思维。
3、数学思维的一般方法:
观察与实验: 观察:是受思维影响的,有目的、有计划地通过视觉器官去认识事物、状态及上线关系的一种主动活动。观察是思维的窗口。实验:是有目的、有控制地创设一些有利观察对象,并对其衽观察和研究的活动方式。
4、初步逻辑思维能力及其培养:
逻辑思维是数学思维的核心。逻辑思维是一种确定的、前后一贯的、有条有理的、有根有据的思维。 概念明确:概念是反映客观事物本质属性的一种思维方式。判断准确:判断是对某个事物的性质,现象作出肯定或否定的思维方式。
数学判断是对数量关系和空间形式有所肯定或否定的一咱方式。表达数学判断的语句又称数学命题。判断是由主概念、谓概念和联系词三部分组成。 推理符合逻辑:推理是由一个或几个已知的判断推出一个新判断的形式。 推理分归纳推理、演绎推理和类比推理三种。
归纳推理(从特殊到一般);演绎推理(从一般到特殊);类比推理(从特殊到特殊)培养初步逻辑思维能力的基本途径: 要挖掘教材中的智力因素,把培养思维能力贯穿于教学的全过程。要给学生提供足够的材料。
要顺着学生的思维,重视学习过程。 要重视数学语言的表述。初步形象思维能力及其培养形象思维:是依托对形象材料的意会,从而对事物作出有关理解的思维。 形象思维的基本形式是表象、直感和想象。
㈢ 如何提高小学数学解决问题的能力
美国全国数学管理者大会(NCSM)把解决问题定义为:将先前已获得的知识用于新的、不熟悉的情况的过程。这一理念用在解决数学问题上,就是指学生将已有的数学知识、方法灵活运用于解决数学与现实生活中的问题。这种解决数学问题的能力是学生数学素养的重要标志。但小学生受年龄所限,知识积累、生活经验、社会实践均不丰富,我们该如何培养他们解决数学问题的能力呢?
一、培养问题意识——善于提问
古人云:“学源于思,思源于疑。”培养问题意识就是要鼓励学生质疑;鼓励学生有自己独特的见解;鼓励学生提出有价值的问题。在教学过程中,要允许学生随时提问,并随时对学生所表现出的提问行为、怀疑和批判精神等进行表扬和鼓励,从而使他们敢于提问、善于提问。
二、学会正确审题——精准分析
众所周知,“理解了题意,等于题目做出了一半。”解决问题的难度是由问题的情节和数量关系的状况所决定的,要想顺利解决数学问题就得认真审题。审题的目的在于使学生理解题意,即理解问题的情节部分,知道问题讲的是一件什么事情,事情的经过是怎样的,已知了哪些条件,要求什么问题等等。在这个基础上,再根据题目中的一些关键词语进一步分析题目中的数量关系。在教学过程中,我总结出了“读、找、圈、想、算”五步解题法,即
㈣ 客观题:什么是数学思考与问题解决能力,请分别说
一、理解问题
发现问题并进行分析的关键是什么?是通过观察、阅读等方式,从繁杂的信息中,获取到有价值的信息,准确的把握现状,快速把握问题的本质和关键。
在数学思维课上,老师会通过场景、动漫、故事等不同的形式,激发孩子的兴趣,引导孩子通过观察等手段,理解问题。比如用不同的形状,摆成不同难度的规律,让孩子通过观察分析,获取信息,通过思考,找到规律。
二、分析问题
当理解了问题后,不是立刻着手去解决问题,而是通过分析,构建出自己的框架,制定好自己解决问题的策略、方法、步骤等。
在数学思维课上,老师会设定问题,引导孩子分析,并最终解决问题,强调一点,一定是要让孩子自己分析,形成自己的思考方式。比如老师出了一个有规律的题目,让孩子判断被遮挡的部分的答案,孩子需要分析自己的目的是什么,通过已知条件,从哪些角度进行分析,有没有其它可能。
三、找出答案
解决问题的方案可能有很多种,只有尝试更多种可能性,才会打破固有思维,形成创意化的解决方案。传统教育让人诟病的一点就是,很多题目都有标准的答案,限制了孩子的思维的发展。
在数学思维课上,老师会鼓励孩子通过多种方式解决问题,尤其还会鼓励不同的孩子,表达出不同的想法,让不同的孩子之间进行思维碰撞,开拓思维,解决问题。拿凑十法计算为例,13+5=?,老师会通过积木,表示这个算式,孩子可以通过拆分积木,得到答案,可以把13拆成10和3,算式变成10+(3+5)=18;也可以把13拆成5和8,算式变成(5+5)+8=18。
四、评估解决方案
找出解决方案,还需要进行各方面的评估,通过不同维度的分析,来判断方案是否是最优方案,并做出选择。
在数学思维课上,在孩子得出不同的解决方案后,引导孩子思考,那种方案更适合,也最优选,从而成为自己日后解决问题的首选方案。
五、实施方案
选出优选方案后,还需要动手实施,验证自己的方案是否合理,毕竟实践出真知。
在数学思维课上,老师会用生活化的场景,设计问题,让孩子利用自己得出的方案,去解决生活中的问题,间接的体验生活,实现学以致用的目的。
总结:通过数学思维课,培养孩子思考能力,形成科学的思考习惯,遇到问题,知道如何着手分析,解决问题的能力自然会得到提升,也就不会出现高分低能的现象了,对未来发展,有着举足轻重的价值。
㈤ 如何培养小学数学解决问题的能力
新的课程标准对培养学生提出问题的意识以及要培养学生解决问题的能力有明确的说明。所以教师在课程改革的过程中,要努力培养学生提出问题,解决问题的能力。如何在教学中培养学生提出问题的意识,培养学生解决实际问题的能力呢?以下是我的几点简单的认识:
一、与生活相结合,培养学生提出问题的能力。
爱因斯坦指出:“提出一个问题比解决一个问题更为重要,因为解决问题也许是一个数学上或实验上的技能而已,而提出新的问题、新的可能,从新的角度去看旧的问题,却需要创造性的想象力,而且标志着科学的真正进步。”我国教育家陶行知先生也说过:“发明千千万,起点是一问”。由此可见,问题是创新的起点,培养学生提出问题的能力是非常重要的,而教师应如何培养学生提出问题的能力呢?我有几点自己的看法:
1、让学生敢于提问。
在传统教学的影响下,学生习惯于解决教师或教材提出的问题,而不习惯也没有机会自己发现问题、提出问题。质疑是思维的导火索,在教学中,教师要根据小学生好奇心强的心理特点,有意识地设置“问”的情境,使学生形成认知冲突,主动地去发现问题、提出问题、解决问题。例如:在学习减法时,我首先出示了商店里的一角里的物品以及价钱,问学生,看到这些,你想提什么问题?学生在思考后提出了如下问题:一个羽毛球和一枝钢笔一共多少元?一本书比一个练习本多多少元?一个乒乓球比一个篮球便宜多少元?三个羽毛球和三个乒乓球一共多少元?等等。这些问题有学过的加法的问题,我就及时解决,复习了旧知识,而也有新知识,可尽管这节课无法一一解答这些问题,但这些问题是学生通过自己的积极思考提出来的,他们渴望将这些知识弄明白,因此能积极主动地去学习和探索知识。
教学中,教师还可以采用讲故事、猜谜语、游戏、比赛等形式,把抽象的数学知识与生动的实物内容联系起来,激发学生心理上的疑问,形成悬念问题。也可以借助现代信息技术创设问题情境,通过多媒体教学的特点,充分展示知识的形成过程,给课堂教学增添无穷魅力。例如,在教学“图形的认识”时,教师先出示利用各种不同颜色的图形组合成的一个个漂亮的图案,在利用多媒体的动画功能让他们动起来,组成了一幅画,学生一下子被吸引住了,在学生欣赏这幅画的同时,让学生说说图中有些什么,从而激发学生产生深入了解的欲望:“是用什么图形拼成的?”“我们也来做一幅吧”。进而争先恐后地提出了许多数学问题。
2、让学生善于提问。
首先要教给学生寻找问题的方法,如在知识的“生长点”上找问题,也就是要在实现从旧知识到新知识的迁移中发现和提出问题,在知识的“结合点”找问题,也就是要在新旧知识的内在联系上发现和提出问题,从自己不明白、不理解、认识不清楚的地方找问题。使学生认识到只要多问几个为什么就能发现处处有数学问题。
其次,鼓励学生在比较中提问,比较是在思想上将对象和对象的各部分,个别方面和个别特征仔细辨别,确定它们的异同及其关系的思考方法,教师应让学生习惯于比较这两种事物的异同点,从而提出问题:他们有什么相同的地方?有什么不同的地方?
再次,交给学生分析与综合的方法。从结论出发,追溯到必须知道的条件,或从条件出发,逐步推导出结论。如,要求这个问题,必须知道哪些条件?根据这些条件,能解决什么问题。
在教学中,教师不要为提问而提问,要逐步提高问题的质量,尽可能清楚明白地表述问题,鼓励学生提出具有独创性的问题,使提问切实有助于学生的发展。
3、让学生乐于提问。
适时进行正面评价,让学生感受到成功的喜悦,学生就会乐于提问。教学中,学生即使提出一些很简单或根本就没有什么意义的问题,教师都必须根据情况作出积极的评价,并抓住时机进行引导,教学生如何分析题意,怎样问才有意义。对问得不好的同学,千万不要责备,讥笑,也决不允许班上其他同学取笑,尤其对学困生,只要他们提出问题,教师就要给予充分的表扬和鼓励,注意保护这些学生“问”的积极性,他们为了追求一次一次的成功,积极思考,全心投入,只要有机会,有疑问,便会毫无拘束地抢着提问,从而提高学习效率。
二、扎实教学,培养学生解决问题的能力
解决问题是数学的核心,解决问题能力的培养是数学教育的重要目标,国内外历来的数学课程都把解决问题作为重要的目标。学习数学离不开解题,美国着名数学家哈尔莫斯的名言:“问题是数学的心脏”表达了问题在数学学科中的重要。美国数学教育家波利亚的《怎样解题》之所以成为数学教育研究中的经典,也正说明解决问题在数学教育中的重要地位。所以在数学教学中,我一直努力于学生解决问题的能力的培养,也做了一些自己的尝试:
1、问题中基本数量关系的训练
掌握数量关系是学生分析解答应用题的依据,学生不会审题,不理解题意是数学教学中的难点问题,在教学过程中,如果加强对学生进行基本数量关系的强化训练,就会使学生较熟练地掌握基本数量关系、正确合理地解题,如在教学两步应用题时,结构特点是只给出两个已知条件,但在解答过程中,有一个已知条件要用两次,这是解答两步应用题中的难点,如果数量关系掌握不好,常常导致计算的错误,如: “红花有10朵,白花比红花多6朵,一共有多少朵花?”在解答这道问题的过程中,“10”用了两次,可是有的学生竟错误地把算式列成 10+6=16(朵),结果是一共有16朵花。怎样教会学生正确地理解和掌握题中的数量关系呢?可以把题拆开,把拆题和数量关系的分析有机结合,先给时间进行分组讨论,让每一个学生都有机会参与的机会进行训练。
2、利用线段图帮助分析,讨论汇报,激发学生兴趣。
在课上要组织学生合作讨论,它是让学生主动学习的一种有效方法。在教学中教师要抓住时机,采用多种形式,放手让学生主动参与讨论,在做应用题“饲养小组养 10只黑兔,养的白兔比黑兔多6只,一共养了多少只兔?引导学生画线段图,让学生先进行小组讨论:在线段图中,白兔的只数怎么表示?这一问题是解决本题的难点,留给了学生思维的空间:“这条线段怎样画,才能使白兔比黑兔多6只?”学生在讨论中互相启发,开阔了思路,得出了结论。这种抽象的问题通过讨论,转化成直观的线段图,使学生的数学思维得到升华,发挥了学生间优势互补作用,提高了参与的效度,激发了学生自主学习,自行探索的兴趣。
3、在观察比较,辨别异同中解决问题。
在低年级中,引导学生观察比较是学习解决问题的最好途径。在教学中,重视培养学生的观察思考能力,抓住新、旧知识的联系,设计出能突破难点的具有对比性的练习,让学生进行观察比较,形成新旧知识矛盾冲突,激起他们寻根问底的认知心理趋向,如教学两步应用题,设计了复习题:饲养小组养了10只黑兔,16只白兔,一共养了多少只?例题:“饲养小组养10只黑兔,养的白兔比黑兔多6只,一共养多少只兔?”把第二个条件改为:“饲养小组养10只黑兔,养的白兔比黑兔多6只,一共多少只兔?”理解新知后,教师有计划地在黑板上出示这三道题,引导学生观察应用题的已知条件和问题在比较这三题解答方法的异同点。通过分组讨论,自主地解决问题,突破了难点,掌握了知识重点。
总之,在数学学习的过程中,只有教师时刻注意培养学生的问题意识,引导学生提出问题,并且发现问题让学生积极地去探索,去寻找解题方法,那么,学生的数学思维能力才能得到有效发展,学生才能自觉地走上创造性学习之路。数学教学就会取得良好的教学效果,学生数学素养就会全面得到提高。
㈥ 如何提高数学解决问题能力
1、培养思维的灵活性
思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响。如果缺乏思维灵活性,我们的思维就会更加倾向某种具体的方式和方法,很容易出现钻牛角尖的情况,片面追求解决问题的模式化和程序化,长此以往造成思维出现惰性。
擅于从旧的模式和普遍制约条件中脱离出来,找到正确的方向;针对知识可以运用自如,善运用辩证思想来平衡事物之间的关系,具体问题具体分析,懂得变通和调整思路等等,这些是思维灵活性养成的直接表现。
2、培养数学思维的严谨性
思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。
落实到孩子学习生活中去,就是要求在学习新知识时从基本理念开始,做到在思路清晰的前提条件下稳扎稳打,逐步深入,在这个相对来说缓慢的过程中养成思考问题周密的思维习惯,在进行论证推理时掌握足够的理由作为依据;在练习试题时善于留心题干中的隐蔽条件,详细答题,不吝啬地写出解题思路。
3、培养数学思维的深刻性
思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。相信大多数学生都出现过这样的情况,有时候老师评讲试卷,一听错题的解题过程很容易就懂了,恍然大悟自己居然犯了如此低级的错误,但一旦离开书本和老师就无法领会到解题方法和实质,实现独立解题。这就要求学生在平时的学习中要透过现象看数学的本质,掌握最基础的数学概念,洞察数学对象之间的联系,这是思维深刻与否的主要表现。
㈦ 举例说明什么是数学知识、技能、能力和思想方法
数学思考方法指解决数学问题的思路,一般有顺向思维和逆向思维,还有类比的思考方法。解题方法指的是具体的解题技巧,比如假设法,代数法(就是方程)表格法、画图法等。技能指的是运用这些基本方法的熟练程度,而数学能力则是指人的数学综合素质,包括思路是否清晰,运用的解题方法是否合适,计算能力思维能力是否达到一定水平等。至于数学知识这个概念,则很笼统,只要是涉及到数学方面的生活常识、公理定理、公式、解题方法等等,都可以称为数学知识,比如一年有四季,一时有60分等,当然也包括以上列举的能力方法等几项内容。
㈧ 数学基本能力分为( )( )( )及解决实际问题的能力。
数学基本能力指的是基本的运算能力、思维能力、空间想象能力以及体现数学与生产、生活、相关学科相联系的基本应用能力
对初中数学能力把握的几点认识
〔关键词〕初中数学;基本能力;综合能力;数学思想;解题能力
〔摘要〕本文就初中数学基本能力和综合能力的理解和要求,提出了几点认识。指出数学思想对于数学知识、数学的方法技巧、数学运算等具有统摄作用,所以要培养学生运用数学思想解决数学问题的能力。
〔文献标识码〕A〔文章编号〕1002—5308(2000)04—0028—04〔中图分类号〕G633.6
在大力推进素质教育的今天,人们对培养学生能力的问题越来越关注。在初中数学学科教学中,广大教师认识到素质教育的要求应该在数学教学中得到强有力的体现,而这种体现在很大程度上取决于对学生数学能力的培养。根据义务教育的特点,初中数学的能力可以分为两个层面:第一个层面是数学的基本能力,它是基础性学力的层面;第二个层面是数学综合能力层面,它是发展性学力的层面。诚然,无论数学的基本能力还是数学的综合能力都需要以数学基础知识、基本技能为基础;反过来,数学的基本能力、综合能力的习得使数学基础知识、基本技能的掌握更为扎实、巩固,应用更自如。下面就对初中数学的基本能力和综合能力的理解与要求,提出几点认识。
一、数学基本能力的理解及要求
初中阶段,数学基本能力指的是基本的运算能力、思维能力、空间想象能力以及体现数学与生产、生活、相关学科相联系的基本应用能力。这些能力是完成九年制义务教育的合格初中毕业生所必须具备的。
所谓基本运算能力,是指不仅会根据法则、公式等正确地运算,而且理解运算的算理,能够根据题目条件寻求合理简捷的运算途径;是指能驾驭非繁复的数学运算的能力。检测基本运算能力的方面有:①实数运算;②代数式运算(包括整式、分式、根式运算);③因式分解;④指数运算;⑤ 与函数有关的运算;⑥锐角三角比运算;⑦解方程及列方程解应用题;⑧解一元一次不等式及一元一次不等式组;⑨最基本的几何计算。对基本运算能力的要求是:正确、合理、迅速,要有扎实的基本功。
但是,对繁复的运算不作要求,因此我们在复习时,应当适当控制运算难度,在提高运算的准确率方面多下工夫,在此基础上进一步要求运算的合理、迅速。
所谓基本的思维能力,是指会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点,形成良好的思维品质。初中阶段,基本的逻辑推理能力是思维能力的主要构成成分。基本的逻辑推理能力主要是指这样一种能力对不需添置辅助线或只添置常用辅助线(这种辅助线在教材中明显出现过)便可证明的基本几何证明题,能够用分析法寻求证题思路,井用综合法写出证题过程。这类基本证明题主要是证明线段、角的相等,直线的垂直关系、平行关系,三角形的全等或相似关系,或者证明图形是平行四边形(包括矩形、菱形、正方形)、梯形(包括等腰梯形、直角梯形),以及证明线段的比例关系、直线和圆的相切关系等等。对基本逻辑推理能力的要求是:逻辑关系表达清楚、简洁,“关节点” 交代清楚,不跳关键步子,推理的依据应是九年制义务教育初中数学教材范围内的定义、公理、定理。
所谓基本的空间想象能力,指的就是空间观念,能够由形状简单的实物想象出几何图形,由几何图形想象出实物形状;由较复杂的平面图形分解出简单的、基本的图形,在基本的图形中找出基本元素及其关系;能够根据条件作出或画出平面图形及基本的空间图形。初中阶段,空间观念具体地指用数轴表示不等式及不等式组的解集;由已知函数关系式,寻求函数的性质;观察图形,估计有关几何对象的位置和大致的数量关系佣直尺、圆规、量角器、三角板等工具画几何图形,用直尺、圆规作图(包括五个基本作图、三个基本轨迹的作图、教材中的简单的尺规作图题等等)。
基本应用能力指的是能够解决带有实际意义和相关学科中的数学问题,以及解决生产和日常生活中的实际问题。初中阶段,主要体现在列方程解应用题、解直角三角形的应用、统计知识的应用、函数知识的应用以及几何中相似形、圆的知识有关的实际应用,尤其是以数学为工具来解决一些生活(如商业、经济等方面)和生产建设(如增长率、测量等)的实际问题。目前要加强数学应用能力的考查已逐渐为大家所关注。
二、数学综合能力的理解及要求
所谓数学的综合运用能力,主要指能应用代数知识、几何知识结合起来解决问题的能力; 能应用数学知识和方法解决现实生活中的实际问题(通常称为“问题解决”)的能力;能运用基本数学思想解决含有一种或多种数学思想的数学问题的能力;能解决一些比较简单的研究型、探索型、开放型问题的能力,在同一个问题中,有时会需要用到不止上述几方面能力中的一种,往往需要用上述多方面的能力,有时还会用到与数学相关连的其他学科知识,涉及到一般的能力。
㈨ 数学能力是什么
第一,数学教学从热衷于无数的常规练习转到发展有广阔基础的数学能力,学生的数学能力应该要求能够辨明关系,逻辑推理,并能运用各种数学方法去解决广泛的,多种多样的非常规问题;
第二,要求今日的学生必须能够进行心算和有效的估算;
第四,知道在某一特定条件下适于使用那种数学运算;
第五,能从模糊的实际课题中去形成一些特别的问题;
第六,会选择有效解决问题的策略。
2)2000年,美国数学教师协会发布《数学课程标准》,提到六项能力:
第一,数的运算能力;
第二,问题解决的能力;
第三,逻辑推理能力;
第四,数学连接能力;
第五,数学交流能力;
第六,数学表示能力。3)2003年,中华人民共和国教育部制定的《普通高中数学课程标准》(实验)界定了数学思维能力,它包括直观感知,观察发现,归纳类比,空间想象,抽象概括,符号表示,运算求解,数据处理,演绎证明,体