Ⅰ 数学四大领域是什么
数学四大领域是:
1、数与代数:数的认识,数的表示,数的大小,数的运算,数量的估计;
2、图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
3、统计与概率:收集、整理和描述数据,处理数据;
4、实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学的重要性:
1、常青的知识
作为小学、中学到大学必修的重要课程,数学是人类必不可少的知识,这一点不会有人疑问。
人类的许多发现就像过眼烟云,很多学科是从推翻前人的结论而建立新的理论的;然而,古往今来数学的发展,不是后人摧毁前人的成果,而是每一代的数学家都在原有建筑的基础上,再添加一层新的建筑。因而,数学的结论往往具有永恒的意义。
2、科学的语言
伽利略曾说过:“大自然这本书是用数学语言写成的……除非你首先学懂了它的语言……否则这本书是无法读懂的。”数学这种科学的语言,是十分精确的,这是数学这门学科的特点。
同时,这种语言又是世界通用的。加减乘除,乘方开方,指数对数,微分积分,常数等等,这些数学语言和符号一开始虽然可能五花八门、各有千秋,但早已统一为一个固定的样式,世界各地通用,对我们的掌握和使用是十分方便的。
3、有力的工具
数学在人们的日常生活及生产中随时随地发挥着重要的作用,已经是有目共睹。
在现代,数学作为现代化建设的重要武器,在很多重要的领域中更起着关键性、甚至决定性作用。我们国家在两弹一星研制中的出色成就,凝聚了不少优秀数学家的心血,就是一个突出的例子。
4、共同的基础
现在,不仅在自然科学、技术科学中,而且在经济科学、管理科学,甚至人文、社会科学中,为了准确和定量地考虑问题,得到有充分根据的规律性认识,数学都成了必备的重要基础。离开了数学的支撑,有关的科学已很难取得长足的进步,很多学科(特别是很多自然科学学科)近年来甚至已经出现了数学化的趋势。
5、重要的科学
数学忽略了物质的具体形态和属性,纯粹从数量关系和空间形式的角度来研究现实世界,它和哲学类似,具有超越具体学科、普遍适用的特征,对所有的学科都有指导性的意义。
现在的数学科学已构成包括纯粹数学及应用数学内含的众多分支学科和许多新兴交叉学科的庞大的科学体系。
6、关键的技术
过去一支笔、一张纸就能搞定的数学,竟然可以成为一门技术,似乎是匪夷所思。但是,数学的思想和方法与高度发展的计算技术的结合的确已经形成了技术,而且是一种关键性的、可实现的技术,称为“数学技术”。在这种技术中起核心作用的部分是数学,拿走它就只剩下一堆废铜烂铁。
7、文明的基石
数学是人类文明的重要基础。它的产生和发展伴随着人类文明的进程,并在其中一直起着重要的推动作用,占有举足轻重的地位。数学过去是、现在是、将来也将是一种先进的文化,它带领着、推动着、影响着人类的文明进程,深刻地改变着世界的面貌,也改变着人类本身的思维能力和认识水平,改变着人类的本身。
Ⅱ 如何帮助学生积累数学活动经验,如何提升学生的数学学科素养
2001年《数学课程标准(实验稿)》第一次将“数学活动经验”列入义务教育数学课程目标:“获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”表明数学知识不仅包括“客观性知识”,还包括从属于自己的“主观性知识”。十年后(2011年)出版的《数学课程标准》把“双基”扩展为“四基”,即除了“基本知识”、“基本技能”以外,加上了“基本思想”和“基本活动经验”,意在进一步强化基本活动经验。把数学活动经验确定数学课程目标,体现了对数学课程价值的全面认识;数学活动经验的积累有助于形成比较完整的认知结构,提升学生素养,对后续学习和发展产生积极的影响。下面我从“如何让学生积累数学活动经验”的视角,对四年级下册数学“小数的加减法”一课谈几点个人的看法。
一、激活已有认知, 唤醒活动经验
《义务教育数学课程标准(2011版)》指出:“应重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程”,“有效的数学活动必须建立在学生的认知发展水平和已有知识经验的基础上”,分析学生已有的数学活动经验与新知识之间的结合点是有效教学的前提。心理学研究表明:儿童的数学学习是基于自身经验,用自己独特的思维方式进行意义建构的过程。真正适合儿童的学习,应该是一种充满活力的学习,一种能从内心深处唤醒沉睡的想象力和激情的学习,因此课堂教学中我们要从学生已有的经验出发,帮助学生找准新旧知识的连接点精确切入,唤醒学生的活动经验,让学生生动、有效地学习新知,使他们的活动经验得到积累,促进知识的有效迁移。四年级学生已经认识了简单的小数,会计算一位小数的加减法、掌握了整数加减法的计算方法以及小数的基本性质,这些认知都是进一步学习小数的加减法的基础,教学中充分利用学生的认知基础,让他们大胆尝试、自主探索、合作交流,引导学生利用自己已掌握的整数加减法计算的旧知迁移到小数加减法。当教学计算“2.26-1.18”时,采用(1)议一议。如何列竖式?怎样计算?(2)试一试。尝试列竖式计算;(3)说一说。你是怎样想的?整数加减法又是怎样列竖式计算?(4)想一想。把2.26米、1.18米改写成用厘米作 2.26 226
单位怎样计算?(5)比一比:比较-1.18 -118 找出联系与区别。这
1.08 108
样激活学生已有的认知,向他们提供从事数学活动和交流的机会,突出相同数位对齐的道理和退位的过程,成功地解决了小数减法的问题,使学生在探索中感感悟了小数减法的计算方法,变“要我学”为“我要学”。
二、经历生活过程,领悟直接经验
建构主义理论认为:学生的数学学习是一个主动建构的过程。数学来源于生活,又服务于生活;学生生活经验是很丰富的,它是数学学习的重要资源。教师要善于捕捉生活中的数学,从学生熟悉的生活经验出发,创设生动有趣的生活情境,引导学生将生活经验与数学经验“有效对接”,让学生感受到数学与生活的联系,经历生活过程,主动建构知识,进而领悟直接经验,从而涌动激情,体验学习成功的快乐。教学中教师从生活入手,设计到超市买东西的例子,通过使用人民币的经验来解释数学问题。如设计赵亮是个喜欢运动的孩子,他买了一双运动鞋20.18元,一盒乒乓球9.6元,他应付多少钱?妈妈包里有30元够付吗?应找回多少钱。学生通过自己平时购买物品的经验,很快解决了这些问题,即
20.18元=20元1角8分 9.6元=9元6角
20元1角8分-9元6角=29元7角8分
30元-29元7角8分=2角2分
这个过程就是生活经验转化为数学知识和数学活动经验的过程,学生在计算中领悟了直接经验。这样教学学生体会了小数加减法计算与我们日常生活息息相关,若不学习小数计算会影响我们日常生活,从而产生要学习小数加减法计算的迫切愿望。
三、开展探究活动,丰富间接经验
数学家华罗庚提出:“学数学不仅要获取知识结论,更重要的是经历结论得到的过程,因为只有经历了这个探索过程,才能明晰数学思想方法的积淀、凝聚的过程。”学生的学习活动不仅建立在看数学、听数学、说数学的基础上,更应重视为学生提供亲自探索实践的机会,让学生做数学,积累丰富的间接性活动经验。
联系学生的生活经验学数学,并不意味着数学局限于让学生借用生活经验解决数学问题,如果忽略了把生活经验提升为数学经验,那么学生尽管学得热烈、积极,而少了数学化的深入思考,思维仍然徘徊不前,无法体现数学教学是数学学科的教学本色。因此,教师必须摆正生活感悟与数学思考的关系,应把生活经验作为促进学生进行数学思考的催化剂,引导学生把直接的生活经验提升为间接的数学经验,在数学化的思考活动中建构数学。如上面赵亮买运动鞋和乒乓球一题,学生如果只停留在用人民币购买物品的经验属于直接经验,在教学中着重引导竖式计算:(1)计算20.18+0.96时,两个小数怎样相加减?使学生明确小数点对齐,就保证了相同数位对齐,只有相同数位对齐,才能保证相同计数单位上的数字相加减的道理。(2)计算30-29.78时,整数如何与小数相加减?使学生理解整数可根据小数的基本性质写成小数的形式,小数的末尾添上零,小数的大小不变;30添上零后,两个小数有同样多的位数,可以更快更准确地计算。这样向学生提供从事数学活动和交流的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识、技能,使学生在活动中体验探索和策略,逐步丰富学生的间接经验。又如出示53.42-49.8 53.4+58.6,教师大胆地放手让学生去尝试,给予学生自主探索、合作交流的空间和时间,学生之间互相交换对问题的看法,在运用数学语言交流的过程中逐渐理解“小数点对齐”和结果化简的道理,在活动中体验数学的简洁美,在探索中感悟小数加减法的计算方法。这样学生亲身经历了用竖式计算小数加减法的全过程,获得笔算小数加减法的经历和体验;在数学活动中,学生积极探索、主动建构,享受了知识的形成过程,丰富了数学活动经验。
四、加强归纳应用, 提炼思维经验
学生数学活动经验的积累是一个循序渐进、层层递进的过程,在这个递进的过程中,后者建立在前者的基础上,学生前期积累的数学活动经验,只有参与多样化的数学活动,经历多次调用和加工才能逐渐内化为概括性更强的经验,进而达到理性的领悟,更有效地推广到同类问题的解决中去;学生在活动中获得的经验,起初往往是模糊零散的,并且不易被学生直接感受到,所以这就需要教师帮助学生将学习过程中习得的这些模糊零散的经验清晰化、条理化、系统化,并因此留在大脑中。教学中对学生获得的经验,形成的表象要进行分析归纳、深化应用,形成抽象化意义的统一认识。教学中借助学生笔算小数加减法的经历,通过师生、生生间的交流,将初步的感悟上升到新的高度,共同总结出小数加减法计算的一般方法,进一步理解列竖式时小数点对齐的道理,促使学生思考提升对小数加减法笔算过程的认识,让学生在总结概括数学知识的活动中,锻炼提高思维水平。
朱德全教授认为:“应用意识的产生便是知识经验形成的标志。”积累基本活动经验要注重学生基本活动经验的运用,这种经验要注重思维的介入,没有思维的活动只能速写为缺失了数学意义的基本活动经验。教师应经常让学生运用所学知识去解决现代生产生活和其他学科学习中的实际问题,使学生在用数学的过程中,一方面进一步巩固所学知识,另一方面深深感悟数学在社会生活中的地位和作用,体会数学的应用价值。当学生归纳总结出小数加减法方法后,让学生练习:(1)填一填:鸟巢可容纳约9.12万观众,水立方可容纳约1.68万观众,两处共容纳约 万观众。突出小数点的书写,巩固应用小数加减法的计算方法,渗透数学的简洁美。(2)速算。8.88-2、8.88-0.2、8.88-0.02、8.88-0.002,进一步强调小数点对齐,并通过比较培养了学生的思维能力。(3)纠错题。充分让学生找出错误的原因,有针对性地较正,使得经验的知识结构更加完善。(4)开放题。2012年伦敦奥运会跳水比赛中,女子10米跳台双人决赛成绩表如下:
让学生搜集、处理信息,提出数学问题,这个过程就是一个思考、学习的过程。由于学生提的问题是多样的,列式解答的方法也是多样的,在解决问题中学生领会多种解题思路,感受解题策略的灵活性,提高了数学思考能力。通过这些练习使学生的经验从一个水平上升到更高水平,巩固了活动经验,实现了经验的重新改组。
五、引导反思评价,发展复合经验
弗赖登塔尔教授认为:“反思是一种重要的数学活动,它是数学活动的核心和动力。”教师要给予学生的反思以充足的时间和空间,使每一个学生都积极思考,真正培养他们的数学能力。当学生的数学活动经验积累到一定程度后,教师应引导学生在回顾的基础上进行深度反思,这样一方面可以发挥经验因素在数学学习中的积极作用,另一方面也使学生有意识地避免经验因素的消极作用,使积累起来的数学活动经验能够更好地为学生所用。课堂教学中,教师在归纳强化后,要注意引导学生评价反思。对数学活动经验进行提炼、总结、提升,使之成为经验化并加以推广,在此过程中,提升数学学习方法,养成反思体验的习惯,发展复合经验。如在经历小数加减法探索后,组织学生进行讨论并及时给予评价强化,帮助学生对获得的小数竖式加减法经验进行显性化,当学生做完8.88-2、8.88-0.2、8.88-0.02、8.88-0.002时,引导学生反思,这些题目有什么特点?从而使学生积累被减数相同,减数的数字相同而小数点的位置不同,差也不同的经验;又如,学生计算出111.60-99.00=12.6后,让学生反思,怎样检验是否做正确了,引导学生验算,既发挥了学生的主体作用,又有利于培养迁移;当学生计算错误时,要善于捕捉来自学生的失利经验,调整教学策略,启发学生反思,让学生识错、主动纠错,让学生真正学习自己需要的数学,使经验的知识结构更加完善。一课结束时,可引导学生反思:我们是怎样得到小数加减法计算方法的?在学生回答的基础上,利用课件逐步出示学生将小数加减法数位对齐的活动过程,同时对学生及时作出评价;结束时的反思可以是知识、技能内容,也可以是思想方法、活动经验的内容。
总之,数学活动经验的获得是一个积累、提升的过程,教师要充分激活学生原有的认知水平,让学生经历生活过程领悟经验,在探究活动中丰富经验,在反思评价中提升经验,在归纳应用中发展经验,切实将数学知识、数学技能、数学思想方法的获得统一于数学活动经验的积累过程中,从而不断提高学生的数学素养。
Ⅲ 如何在数学教学中积累学生的基本活动经验
那如何让学生在数学学习中积累基本的活动经验呢?下面我就结合《面积和面积单位》一课来谈一谈自己的一点想法。
一、置身生活场景,将生活经验提升为数学活动经验;
生活是数学教学的源泉。学生数学活动经验的积累,离不开学生自己的生活经验。教学中,教师要善于为学生创设生活化的学习环境,捕捉生活中的数学现象,挖掘数学知识的生活内涵,将数学与生活密切联系,充分发挥生活经验在学生积累数学活动经验中的积极作用,将起到事半功倍的效果。
【师:今天的会场还来了这么多的客人,那你们说我们应该以怎样的方式欢迎他们的到来呢?(学生鼓掌)谢谢同学们的掌声!
师:现在大家看看刚才我们鼓掌时两只手接触的地方。
生:(学生做鼓掌时的动作,观察。)
师:鼓掌时相接触的这个面就是手掌面。那谁想摸一摸老师的手掌面呢!看看谁是这节课老师认识的第一位小朋友?
生1:从上向下摸
师:瞧他摸得多规范呢,像这样从上向下摸就把老师的整个手掌面都摸到了。(师与学生握手)认识你真高兴!
师:谁还想来摸一摸?
生2:从下向上摸
师:他是从下向上摸的,看来你是一个很爱思考问题的学生。
生3:从左向右摸
师:看得出你是一个与众不同的人 !
师:刚才的三位同学虽然摸的方向不同,但却把老师的整个手掌面都摸到了】
在这个片段中,我从学生已有的生活经验出发,通过生活经验与教材内容发生交互作用,诱导学生激活了自己原有经验的同时,激发了学生的学习兴趣,学生在教师指导下,在生生之间的相互启发促进中用不同的方式摸全老师的手掌面,让学生在“做数学”中体验数学,感悟数学,获得体验,将生活中的摸的方法这一数学现象的经验进行分析、比较、归纳,加以总结与升华,丰富与发展学生的数学事实材料,将生活经验提升为数学活动经验,为学生接下来更好的感知面积积累了一定的数学经验,使经验的构筑与知识的习得溶为一体。
[案例二]教学“乘法的分配律”。利用本班教室内的24套课桌椅进行探究。
师:我们班有多少个同学?有多少张桌子?有多少把椅子?
生:(很快回答出)
师:如果每张课桌85元,每把椅子45元,你能算出购买这批桌椅一共需要多少元?
生:列式计算,汇报算法。(85十45)×24
85×24 +45×24
师:说一说你是怎样想的?
生1:我是先求去一张课桌和一把椅子的价格之和,再乘以24套,就得到总价。
生2:我是先求桌子总价,再求椅子的总价,最后再求和。
师:这两种算法有什么关系?
生:相等。
师:能试着用语言来说一说等式的两边表示的意义吗?
生:尝试用数学语言口头表述两式的意义,小组内进行互说交流。
……
这个教学片断,有效地利用学生生活中看得见、摸得着的事物进行实际计算,学生已有的生活经验支撑起计算和语言描述活动,为抽象概括出乘法分配律提供可依托的数学事实,同时运用生活经验的表象作用,引导学生深入进行“数学化”的探究,事实、经验、知识相互作用,有利于经验的逐步累积并顺利上升为数学模念。
二、让学生的思维活跃起来,在思维的跳跃中积累数学活动经验。
【播放绘图的片段】
思维是根本,活跃的思维是课堂不可缺失的灵魂。在这个教学片断中,我和学生共同经历了画封闭图形与不封闭图形及涂色的过程,通过操作、交流、观察、思考等活动,把抽象的知识化为具体的、形象的、可操作的知识,把学生的思维一步步引向深处,学生在轻松愉快的氛围中,思维被激活了,同时我更珍惜学生的感悟、体验,理解,学生在猜测、验证、总结的过程中,既深深地感受到封闭图形的面积,理解不封闭图形面积是不能确定的这一抽象的知识,同时又掌握了一些基本的研究问题的方法,让学生在思维的跳跃中积累 “基本的数学活动经验”。
三、让学生在“亲历”中积累数学活动经验;
学者史宁中曾说:“我们必须清楚,世界上有很多东西是不可传递的,只能靠亲身经历。智慧并不完全依赖知识的多少,而依赖知识的运用、依赖经验,教师只能让学生在实际操作中磨炼。”
可见,活动是经验的源泉,不亲历实践活动就根本谈不上经验。纸上得来终觉浅,绝知此事须躬行。对于孩子们来讲,动手做始终是他们最欢迎的学习形式,只有学生动手操作、体验积累的数学经验,才能最终沉淀到他们的内心深处,成为一种素质,一种能力,伴其一生,受用一生。
因此,数学教学应强调“做数学”,通过做数学让学生来体验、理解数学的内容、思想与方法,通过让学生亲自参与充满丰富、生动的思维活动,在实践中获得活动经验。
【师:请大家拿出2号学具袋中最小的正方形,动手量一量他的边长是多少?
生测量 1厘米
师:(出示、课件)像这样边长1厘米的正方形, 面积是1平方厘米(板贴)
让我们一起来记住这位新朋友,仔细看,用心记,把1平方厘米印在你的脑海里,头脑中有1平方厘米了吗?
师:好,现在就画一个1平方厘米,但不能用格尺,也不能用1平方厘米的学具。
学生画
师:同桌之间互相检验,你想对他说什么?
生:我的同桌画的太小了,在大一点就好了、、、、、、
师:谁画的比较接近1平方厘米,请举手。
师:这就是数学美!画的不准的同学再画一次,相信你这次一定会有进步的。
生:老师,我画的正好····
师:很激动,是吗?这就是数学带给我们的不一样的乐趣!
师:你能在身边找一找1平方厘米吗?
生:大拇指甲的面积、纽扣面的面积、、、、、、】
这是在认识1平方厘米时设计数学活动,这一活动的设计目的是激发学生主动参与、实践、思考和探索,让学生在活动中学习和感悟数学,帮助学生积累数学活动经验。这个过程中的测量、徒手画、同桌评价、在身边找,这就是一个积累基本活动经验的过程,一个帮助学生获取具有数学本质的数学活动经验,建构数学模型、数学思想方法的过程。
“儿童的智慧就在他的手指尖上”,数学活动经验是学生在学习的活动过程中所获得的,离开了活动过程,这个实践过程是不会形成有意义的数学活动经验的。数学活动经验的积累往往就是靠这样的同伴自己动手实践、同伴分享、观察思考悟出新知,知识的获得不是靠老师教,而是在“润物细无声”中完成的。
作为一线数学教师,我们更应该站在为学生终身发展的高度,努力与学生一同实践,在教学中开展一切有现实意义的数学活动,促进学生提升数学活动经验,为学生的数学素养从“双基”向多元发展作出自已不懈的努力!
Ⅳ 数学四大领域是什么
Ⅳ 数学是一个什么样的东西
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
1:数学史
2:数理逻辑与数学基础
X轴Y轴
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科
发展历史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
图中数字为国家二级学科编号.
结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
基础
旋转曲面(8张)
主条目:数学基础
为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
逻辑
主条目:数理逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.
符号
编辑
主条目:数学符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含着大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.
严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.
另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
简史
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
中国数学简史
主条目:中国数学史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
相关
编辑
中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的:
【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式).
【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”.
【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”.
【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”.
【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”.
【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”.
【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”.
【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”.
【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”.
【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”.
【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”.
【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”.
【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”.
【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”.
【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”.
【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”.
【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”.
【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”.
【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”.
【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”.
数学名言
外国人物
万物皆数.——毕达哥拉斯
几何无王者之道.——欧几里德
数学是上帝用来书写宇宙的文字.——伽利略[2]
我决心放弃那个仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何.——笛卡儿(Rene Descartes 1596-1650)
数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.——高斯
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误.——柯西(Augustin Louis Cauchy 1789-1857)
数学的本质在于它的自由.——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845-1918)
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.——克莱因(Christian Felix Klein 1849-1925)
只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特(David Hilbert 1862-1943)
问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916-2006)
时间是个常数,但对勤奋者来说,是个‘变数’.用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍.——雷巴柯夫
Ⅵ 在数学中,用售价的百分之几做积累的积累是什么意思
意思是一件东西成本25元,按30元出售赚百分之几? (30-25)除以25 (30-25)除以25就是五分之一,百分之二十 (30-25)/25 (30-
Ⅶ 数学又叫什么
数学叫作算术,又称算学,最后才改为数学。
中国古代的算术是六艺之一(六艺中称为“数”)。数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
中国数学简史:
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
符号:
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。
现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含着大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
以上内容参考网络—数学
Ⅷ 我想学文现在是高一。我知道这东西靠积累,学哥学姐们能给推荐点书籍之类的吗再告诉一些学习数学的方法
如何学好初三数学,是摆在即将升入新初三学生面前的一个难题。其实,学好数学并不难!
一、课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
二、上课要“听、记、练”。把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。
三、作业要“思、问、集”。作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。
如果想拿高分建议你做一做历年中考的最后两道题
还要总结一下以往错题 常看避免再犯
(1)学会“数学阅读”
在中小学,我们会遇到这样的情况,当学生向教师问问题时,一些教师常常会说:请你把问题再读两遍;请你把问题讲一讲;请你把问题抄一遍;等等。这些教师要表达的是一个意思,请你再读一读,再理解一下。
我们讲一个真实的故事。在大学,每年都要举办一次“数学建模竞赛”,竞赛的问题都是一些实际问题,要求三人一组,工作三天,共同完成一篇解决问题的“论文”,可以借助各种图书、网上资源和工具(包括计算机和软件等)。1993或1994年,首都师范大学第一次组队参加,让我们担任指导教师,我们十分为难,首都师范大学的学生要与北大、清华的学生一起考试,差距是明显的,是多方面的。我们分析,感到最大的差距是:独立地学习和理解数学的习惯和能力。我们改变了辅导的方式,让学生选择内容,学生讲,我们听。开始阶段,我们总会说:对不起,我们没有听懂,请你重新准备。有的学生讲过四、五遍,当我们感到他真的懂了,再学别的。这种方法很好,大部分学生经历了一次这样的过程以后,再报告其他的内容就变得比较顺利了。这些学生在竞赛中得到了很好的成绩。
在学习外语时,有一种基本能力:阅读理解。我们感到在数学的学习中,“数学阅读”也是非常基本的。这些年我们接触了一些中小学的教学实际,中小学生独立进行“数学阅读”的要求和机会越来越少。教师是好意,为了使学生尽快地提高考试成绩,为了“多讲一些”,为了“节约时间”,教师替代学生做得太多了。我们希望同学们认识到,提高数学阅读能力是学好数学的基本功之一。我们曾经做过一个调查,在地质学科的论文中,数学公式的出现次数是平均每页六次之多。在其他的学科中也有类似的情况。为了更好的说明数学阅读在中小学的重要性,我们以数学“应用问题”为例加以说明。
在中小学数学教学中,“应用问题”常常是难点,为什么难?主要两个理由,一个理由是背景丰富,都是一元二次方程,但是,可以用各种背景去展示,很难规为题型,如果归为“一元二次方程的应用题”,就好像没有归类,如果从背景归类,又会十分庞杂。
第二个理由是问题和条件不像“传统的数学习题”那样规范,有时需要自己从叙述中明确“要求的结论和要证的结论”,“条件”和“结论”的关系不像“传统的数学习题”那样“可丁可卯”,即条件不可多也不可少。这样,需要分析和判断哪些条件有用,哪些条件没用,而分析和判断的依据是因题而异。对目前中小学教学的基调——题型,这些是不匹配的。
应用问题“难”在需要“数学阅读理解”能力,“难”在这种能力不能突击培养、不容易模式化,“难”在教师不能替代。
应用问题,包括数学建模,她的教育作用有两方面。一方面,体会数学与日常生活、数学与其他学科的联系,数学的社会发展中的作用,体会数学的价值。另一方面,从另一个角度体会做数学的过程,数学不仅仅是从概念到概念,从定理到定理,从一些结果到一个新的结果;数学是有背景的,这些背景中蕴含着深刻的数学内涵,这些背景在数学思考中发挥了重要的作用;做数学会有一个过程,是一个很有趣的过程,需要我们发现问题,提出猜想,分析和寻求条件,并且,还会不断地修正,甚至反复,等等。
“数学阅读理解”能力是一种基本能力,教师和学生都应予以重视,提高这种能力需要比较长期的积累,作为教师应该针对不同的学生提供不同的建议。
在中小学数学教学中,有一个认识上的障碍,一些人认为:“学习数学就是做数学习题”,也有人认为:“做习题能力是实的,其他都是虚的。”这种看法是有一定道理的,特别是在对付考试时会起一定的作用。做数学习题的能力是反映数学能力的一个重要方面,通过做习题有助于对一些数学技能、方法的理解。但是,数学的学习还包含更丰富的内容,关于这些我们在前面已经讲了很多。
建议教师多给学生一些机会,针对不同水平和特点的学生,提高他们的“数学阅读理解能力”。很多教师在这方面积累了一些很好的经验,例如,有针对性地让学生阅读教材和收集参考资料,在阅读中,让学生思考“一些重要概念”形成的过程,思考某些章节的知识结构,不同概念(像函数与数列等)的内在联系,等等,并鼓励学生把自己的思考写成报告。
希望学生们把思路开阔一些,除了做习题,还能提出一些值得思考的问题,并养成思考问题的习惯,我们在北大数学系读书时,曾问过丁石孙老师一个问题,大体意思是:什么样的学生算好学生?丁先生的回答使我们终生难忘,“没有问题的学生恐怕不能算好学生”。对很多学生来说,除了不会做的习题,大概没有值得思考的问题。在数学的阅读中,应该不断的提出问题,把自己对数学的理解深入下去。
(2)养成好的数学学习习惯
在这次课程改革中,提出三维目标,其中“过程”也作为一个目标。“学习习惯”是过程的一个很好的体现。
什么是学习习惯?
有的学生放学,回家就做作业(一般是做习题),做完,就算完成学习任务。
有的学生,回家后,先把教师讲授内容的教材认真地读一遍,然后,再做作业,做完,再想一想,今天学的与以前学的有什么联系。
有的学生有些总结的习惯,学习一个段落的内容,一定要整理一下,写下来。
有的学生不喜欢写,喜欢想,常常会做在那发呆,把学过的回忆一遍。
……
不同的学生有不同的学习习惯。养成一个适合自身情况,好的学习习惯,会提高学习的效率,会自然地保持下去,会一生受益。
数学学习有自身的特点,例如,很多人在讲解数学时,喜欢画图,总会用最直观、形象的语言来解释本质的内容;有些人在讲解抽象数学概念时,总喜欢选择一些大家非常熟悉的例子,一下子就会把抽象概念很清晰地表示出来;有些人在教授数学时,总让人有一种整体的感觉,来源、过程、结果、应用等,哪一部分都是不可缺少的,十分自然。用直观的图像来表述抽象的概念;用具体的事例来理解一般的事物;不断地形成整体知识框架;等等。这些都是非常好的“习惯”。
这些好习惯的形成需要长时间的积累,教师自觉不自觉地都在用自己的习惯影响学生,希望各位教师把这件事做得更自觉一些,更主动一些。也希望学生在学习中,成为有心人,形成一些适合自身条件、行之有效的好习惯,改变一些不好的习惯,提高学习效率。
(3)学会“索取”——主动学习
从教师的角度,总希望千方百计把自己的东西给学生。有的学生不知道该如何接受这些东西;有的学生不论好坏全收;有的会挑挑拣拣,好得留下,重要的收好;等等。但是,一般地,教师最喜欢会主动“索取”的学生。
我们常说“授之以鱼,不如授之以渔。”如何“授鱼”,一般教师想得多一些,如何“授渔”,这是极具挑战的,前面说的“好的学习习惯”就是“扑鱼”的范畴。
“授渔”,有两个方面,一是方法,“好的学习习惯”是方法;另一个是动力,“好奇”,“兴趣”,“上进心”,“对数学价值的认识”,这些都是动力。二者是不可分的,“信心”就体现了二者的联系,学好数学,需要花些力气,碰到难处,要坚持一下,我们的一些硕士或博士学生做论文时,常常碰到一些“坎”,除了我们一起分析讨论之外,我们总会要求“再坚持一下”,这个过程不仅能帮助他们建立自信,也会“逼迫”他们总结出“方法”。很多优秀的教师在这方面是很有办法的。
从学生的角度,学生的主要任务是学习,不仅要学会“知识”,把别人的变成自己的;也要学“索取知识”,不断得到自己需要的,这两者也是相辅相成。需要思考。例如,在做题时,有的学生有一种很好的习惯,做完总要想一想,对题目作一个评价,是不是好题?给我留下了什么?这些思考使得他们的学习“事半功倍”,这就是他们索取知识的办法。
我们希望把“教和学”结合起来,在这方面建立起教师和学生之间的互动,一荣皆荣。教师应该尽力多给学生提供一些提高主动性的机会,帮助学生把他们的潜能发挥出来,针对不学生生的情况给于不同的建议,让更多学生尽快“入门”。变被动为主动。
(4)独立思考与研讨交流
学习数学,需要独立思考,对于背景、问题、概念、定理、应用以及它们之间的联系,都需要自己思考,让它们自然地留在我们的头脑中,做问题、习题也需要独立完成,即或请教了别人,最后,还是需要自己来完成。
目前,各种不同形式的讨论班(seminar)已经成为研究数学的一种基本的工作模式,在研究生和部分本科生的教学中,也越来越多地采用讨论班的形式,讨论的形式不同,水平不同,人数不同,但是,基本的形式是一样的,有明确的讨论问题,参加的成员应事先认真思考准备,有主题报告,又充分地讨论交流。
在中小学也可借鉴这种形式,教师和学生一起组织,大家都会受益。
借助网络,搭建专题讨论的平台,已经出现了一批,特别是一些“名师工作室”,采用这样的形式,如果能多一些讨论就更好了。这是信息技术给我们带来的最大方便,我们应该把技术充分地利用起来。