① “数学概念”与“数学定义”的区别
数学定义是指数学具体专有名词的精确解释,和语文上面的下定义很相似.
数学概念是指数学名词的相联系的所有内容.和语文上的诠释差不多.
例如:高中学习的函数
定义为:A B是两个非空的数集,集合A的任何一个元素在集合B中都有唯一的一个与之相对应,从集合A到集合B的这种对应关系称为函数
函数的概念包括的内容就很丰富了,不仅包括定义,还有函数的表示,三要素,及其函数的性质,函数的应用等内容
② 什么叫定义,什么叫命题,真命题
定义原指对事物做出的明确价值描述。
命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。
真命题一种逻辑学术语。在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。命题真值只能取两个值:真或假。真对应判断正确,假对应判断错误。任何命题的真值都是唯一的,称真值为真的命题为真命题。
每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题。但是原命题正确,它的逆命题未必正确。
例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题。命题通常写成“如果......那么......”的形式 。“如果”后面接题设,“那么”后面接结论。
(2)数学什么叫定义扩展阅读:
四种命题的真假关系如下:
1、两个命题互为逆否命题,它们有相同的真假性;
2、两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
充分和必要条件:
1.“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。
2.“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件:如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件,也可称p与q等价。
③ 数学的性质、定义、定理区别
数学的性质、定义、定理区别:
1、数学性质:是数学表观和内在所具有的特征,一种事物区别于其他事物的属性。
如:等腰三角形的两个内角相等
2、数学定义:数学对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明。
如:有两条边相等的三角形叫做等腰三角形。
3、数学定理:定理是指在既有命题的基础上证明出来的命题,这些既有命题可以是别的定理,或者广为接受的陈述,比如公理。
如:线面垂直的判定定理:直线垂直于平面内的两条相交直线,则直线垂直于这个平面。
④ 数学,有定义是什么意思
“有定义”,这是函数的概念,每一个函数都有定义域和值域,如果说函数在什么什么上有定义,就是说它是函数的定义域,能取到值。例如,f(x)=1/x,在除了0之外都是有定义的,而0这一点就称为无定义的。如果,我们另外补充定义,当x=0时,令f(x)=0,这样给上面的函数补充上一点,那么0也变成有定义的了。
⑤ 数学的定义是什么
数学的定义
定义1:
还是一百多年前,恩格斯给数学下的定义是“研究客观世界的数量关系和空间形式的科学”,空间形式就是指的几何学
源自: 高师几何教学改革的设想 《楚雄师专学报》 2001年 陈萍
来源文章摘要:本文在反思师专几何教学现状的基础上 ,提出改革几何教学的一些建议
定义2:
数学定义是对数学发展的概括和总结.必然具有其阶段性与局限性,不存在适合任何时期亘古不变的数学定义.3.现代数学时期(19世纪末以来)现代数学时期是以1873年康托尔(G·Cantor)建立集合论为起点
源自: 从“数学是什么”谈数学及数学教育 《零陵学院学报》 2004年 肖家洪
来源文章摘要: 数学是什么?这是一个公认的难于回答的问题.1941年,美国数学家R·柯朗与H·罗宾斯合作写了一本书,题目就是《数学是什么》.该书缘何不以“什么是数学”为题,我想二者是否有所区别,“数学是什么”,
定义3:
恩格斯在《反杜林论》中,将数学定义为:“纯数学的研究对象是客观世界的空间形式与数量关系”.这在客观上完整地概括了这一时期数学的对象和本质,因而被誉为“经典定义”
源自: 从“数学是什么”谈数学及数学教育 《零陵学院学报》 2004年 肖家洪
来源文章摘要: 数学是什么?这是一个公认的难于回答的问题.1941年,美国数学家R·柯朗与H·罗宾斯合作写了一本书,题目就是《数学是什么》.该书缘何不以“什么是数学”为题,我想二者是否有所区别,“数学是什么”,
定义4:
他说,数学的定义是‘’研究数量关系和空间形式的学科”.首先,它的表达形式简洁、严谨,毫无纸漏和瑕疵.其次,数学的分支丰富多样,为不同兴趣的科学家提供了无限宽广的可能性,具有广裹之美
源自: 沉浸在奥妙王国的中国数学家 《了望》 2002年 浦树柔
来源文章摘要:有些木讷,有些内向,总皱着眉头思考玄奥晦涩的数学问题,走路没准还会撞在电线杆上,这也许是许多人心中给“数学家”描绘的一幅“漫画像”.数学真的离我们那么远吗?数学家都那么古怪可笑吗?8月下旬在北京召开的国际数学家大会,将迎来4000多位来自世界各地的数学家,届时人们可以一睹其群体风采.
定义5:
过去说的数学的定义是恩格斯在《自然辩证法》中提出来的他说数学是研究客观世界的数量关系和空间形式的.恩格斯这个定义是19世纪提出来的随着20世纪数学的发展很多东西用这个定义概括不了
源自: 数学的力量 《安徽科技》 2002年 丁石孙
定义6:
在邵雍看来先天之学是以“数”为其根本的所以他的学说又直称为“数学”.与邵雍同时的道学家程领曾经风趣地说:“尧夫(邵雍)欲传数学与某兄弟某兄弟那得功夫要学须是二十年功夫
源自: 道教灯仪与易学关系考论 《周易研究》 2000年 詹石窗
来源文章摘要:灯仪是道教仪式之中的重要品类.它的形成具有深远的民俗学渊源和思想基础.就理论角度来说,道教之灯似乃以传统易学为结构框架.本文选择了道教灯仪中的几种要代表性的形式进行考察.作者通过文本的解读与历史追索,认为此类灯仪不仅贯穿着易学的象数法门,而且蕴含着深刻的易学义理观念.
⑥ 数学中意义和定义的区别是什么
在数学中,“定义”是揭示数学概念的内涵与外延的逻辑表达形式;而“意义”是指概念、定理或数学问题在现实世界中的表现形式。
⑦ 数学中的性质和定义的区别
数学中的性质和定义的区别:
定义是指 某某某东西是什么。性质是指 某某某东西是怎么样的
定义是一个物体的意义,性质是物体的作用。
定义是通过列出一个事物或者一个物件的基本属性来描写或者规范一个词或者一个概念的意义。 概念是反映事物本质属性的思维产物。 区别 概念是抽象的 定义是客观的
性质[ xìng zhì ]
近反义
近义词
本质性子本性
反义词
共性缺陷缺欠短处劣点毛病通性缺点
从客观角度认知事物的形式事物性质。生物[人动物植物]对事物的适应感觉反应出人性物性。从广义上讲:性质就是一件事物与其它事物的联系【如果一件事物能使一件事物发生改变那么这两件事物便有联系】。例如:氢气的化学性质之一是具有可燃性,燃烧就是使氧气发生化学变化,这种与氧气的联系就是氢气的化学性质之一。
定义[ dìng yì ]
对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明。
近反义词
近义词
界说
定义(Definition),原指对事物做出的明确价值描述。现代定义:对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明;或是透过列出一个事件或者一个物件的基本属性来描述或规范一个词或一个概念的意义;被定义的事务或者物件叫做被定义项,其定义叫做定义项。对于一种事物的本质特征或一个概念的内涵和外延所作的简要说明。
相当于数学上的对未知数的设定赋值,比如“设某未知数为已知字母x以便于简化计算,”对某个命名的词汇赋与一定的意义或形象,则有利于交流中的识别及认同。命名和定义总是相伴而生,用已知的熟知的来解释和形容未知的陌生的事物并加以区别,这是一个理论界的真理。值得注意的是定义是一种表述并非自主认知来源,过度拘泥于它会扼杀知道但无法表述的事物。简单来说,定义是一种人为的广泛、通用的解释意义,如人名(绰号、姓名)、符号、成语…等等。
⑧ 数学里,什么是定理什么是定义
定义是一个汉语词语,拼音是dìng yì,英文是Definition,原指对事物做出的明确价值描述。现代定义:对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明;或是透过列出一个事件或者一个物件的基本属性来描述或规范一个词或一个概念的意义。被定义的事件或者物件叫做被定义项。一般地,能清楚的规定某一名称或术语的概念叫做该名称或术语的定义。
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。
⑨ 定义的意思是什么
定义就是给要定义的概念一个更加具体,详细的解释
比如说,平行,它在数学上的定义就是平面内两根直线,其中一根的任何垂线都垂直另一根线。这里平面,直线,垂直就比平行更加具体,基础,容易理解。