1. 六年级上册数学期末考试应注意什么
期末考试是对全学期甚至会延伸到以前的知识进行综合考查,期末考试的应对首先是对全期的知识点进行复习,再此基础上注重各章节的串联和综合,但是基础一般占70%,综合占30%,所以,如果是要考高分,就要基础和综合难度都要顾及。第二,切忌浮燥,要一步一步踏实复习。第三,考试前2天调整心态,放松心情,注意提高临场发挥最佳状态。
2. 六年级数学必考上册知识点有哪些
六年级数学必考上册知识点如下:
1、分数乘法:分数的分子与分子相乘,分母与分母相乘,可约分的先约分。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变,分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,但分子分母不能为零。
3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,求几个相同加数的和的简便运算。
4、分数乘整数:数形结合、转化化归。
5、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。
因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。
3. 六年级数学上册复习要点
小学六年级全科目课件教案习题汇总语文数学英语
1、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 2、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 3、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
4、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 六、方程
1、含有未知数的等式叫做方程。 2、解方程就是“唱反调” 七、利息=本金×利率×时间 第三单元
图形变换和图案设计时,会用到:轴对称、平移和旋转。 1. 轴对称
2. 平移:关注是上下平移还是左右平移,尤其是平移了多少格 3. 旋转:关注是顺时针还是逆时针方向旋转,关注旋转的角度是多少度 4. 运算定律: 加法交换律和性质 a+b=b+a
加法结合律
a+b+c=a+(b+c) 25+37+63=25+(37+63)
乘法交换律
a×b×c=a×c×b 25×9×4=25×4×9
乘法结合律
a×b×c=(a×c)×b 128×3×8=(125×8) ×3
乘法分配律
两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,再把两个级相加。 a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25 2.37×99
=2.37×
(100-1 ) =2.37×100-2.37×1
减法的运算性质
a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)
第四单元
1. 两个数相除又叫做这两个数的比。其中,比号前面的数是比的前项,比号后面的数是比的后项,前项÷后项=比值 2. 比和除法、分数的关系
a÷b=a :b= (b≠0,除数、分母和后项不能为0)
例如:15÷25=( ):( )==( )%=( )(填小数)=( )折=( )成 再如:甲数和乙数的比是4:3,甲数是乙数的( / ),乙数是甲数的( / ),甲数是乙数的( )%,乙数是甲数的( )%,甲数比乙数多( )%,乙数比甲数少( )%。 (提示:甲数=4 乙数=3) 3. 化简比
化简比就是把一个比化成最简单的整数比。也就是:前项和后项都是整数,并且前项和后项只能有公因数1。
4. 注意:比值是一个数,而化简比结果是一个比。 例如::0.75化成最简单的整数比是( ),比值是( )。 5. 比的应用
重点关注:类似已知长方形的周长是28厘米,长和宽的比是4:3,求长方形的长、宽或面积。
6. 三角形三个内角度数的比是1:2:3或1:1:2,这个三角形是(直角)三角形。 7. 质量单位:吨 千克 克 8. 容积单位:升 毫升
9. 体积单位:立方米 立方分米 立方厘米 1升=1立方分米 1毫升=1立方厘米 10、人民币单位:元 角 分
11、大于0的数叫做正数,小于0的数叫做负数。正数和负数可以用来表示具有相反意义的量。0既不是正数也不是负数。
12、正数和负数可以抵消,比如:+5和-5能完全抵消;-8和+3抵消后得-5。 13、统计图有:(复式)条形统计图、(复式)折线统计图、扇形统计图。 14、条形统计图:很容易看出各种数量的多少。
15、折线统计图:不但可以看出数量的多少,而且能够表示数量的增减变化。 16、扇形统计图:能呈现各部分与总数的百分比。
(1) 平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。
(1) 平面图形知识
①直线、射线、线段的特点、联系与区别。
②角的特征、角的分类、角的度量方法。
③垂直与平行。
④三角形的特征,分类(按边分、按角分)。
⑤四边形。每类图形的特征,特殊与一般的关系。
⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。
⑦轴对称图形。(能画出学过的轴对称图形的对称轴)
4. 小学六年级上册数学必考知识点有哪些
第一单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。"分数乘整数"指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
"一个数乘分数"指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为"1"。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题--用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位"1"的量,求单位"1"的量的几分之几是多少,用单位"1"的量与分数相乘。
2、巧找单位"1"的量:在含有分数(分率)的语句中,分率前面的量就是单位"1"对应的量,或者"占""是""比"字后面的量是单位"1"。
3、什么是速度?
速度是单位时间内行驶的路程。速度=路程÷时间时间=路程÷速度路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙少:(乙-甲)÷乙
第二单元位置与方向(二)1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即"先列后行"。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数的除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,"÷"变成"×",除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据"除以几个数,等于乘上这几个数的积"的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c
第四单元比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20==12÷20==0.612∶20读作:12比20
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算
分数:分子分数线(-)分母(不能为0)分数的基本性质分数是一个数
比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位"1"的量用乘法。
2、未知单位"1"的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位"1"的量,先画出单位"1",标出已知和未知。
(2)分析数量关系。(3)找等量关系。(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第五单元圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)-周长公式:c=πd,c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆-小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.142π=6.283π=9.424π=12.565π=15.7
第六单元百分数(一)
一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成"%"才是百分数,所以"分母是100的分数就是百分数"这句话是错误的。"%"的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉"%"。
(2)小数化百分数:小数点向右移动两位,添上"%"。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位"1")×百分率
3、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位"1")
5、百分数应用题型分类
(1)求甲是乙的百分之几--(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几--(甲-乙)÷乙×100%
(3)求甲比乙少百分之几--(乙-甲)÷乙×100%
第七单元扇形统计图的意义
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
5. 怎样学好六年级上册的数学
首先,掌握:对一些最基本的概念性的知识要点要熟记,熟记的概念是在用到的时候立马能想到相关的公式和法则。
其次:运用:在熟记的基础上首先你能独立把书本上的习题,每一题不落的都会做,到这地步的话就是说你能把前面所熟记的概念性知识能熟练掌握运用了。这点其实很关键的。
再次:提升,在熟练运用的基础上你还要会举一反三,那么这只有通过相关的习题来操练了。可以去书店买一些相关的习题库,通过不断练习来巩固我们前面所要求掌握的公式和法则。在做习题的过程中如何有不懂的一点要把不懂的地方搞懂,这点也是做习题时特别要注意的,题目不在于做多少,关键要看你能不能把知识点运用好。
最后,巩固:过短时间,把前面做错的习题翻出来看看,巩固当初没有牢记的知识点,一段时间过去了,看看现在自己再做以前错了的习题,现在自己还能做对了。。。。
相信这样长时间的操练下,成绩一定会提升的,祝你好运。。。
6. 怎样才能上好小学六年级数学
小学6年级数学辅导怎样做?数学在大部分人的眼中是一科较难的科目,并且跟随年级的增长也逐步变难,正因为这样数学是被拉分的科目.好多学生以为数学就是练习,以为练习好多,得分就会升高.其实有一个关键因素在阻碍我们数学得分的升高,那就是好的学习习惯.
小学6年级数学辅导需要帮助孩子建立的八种好习惯:
8、重复"检查"习惯.培养学生的考核能力习惯是提高数学学习质量的重要举措,这是培养学生自我意识和责任感的必要过程.小学6年级数学辅导只要从以上八点出发,相信孩子在很短的时间内会有惊人的进步.
7. 六年级上册数学重点知识点有哪些
六年级上册数学重点知识点如下:
1、分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
2、分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
3、分数乘小数
分数乘小数,可以把分数化成小数再乘,也可以把小数化成分数再乘,但一般采用把小数化成分数再乘,因为有些分数化不成有限小数。
4、分数乘分数
分数乘分数的计算方法:分数乘分数,用分子乘分子的积作分子,用分母乘分母的积作分母。
5、分数混合运算
分数混合运算的顺序和整数混合运算的顺序相同,即:有括号的,先算括号里面的,再算括号外面的。没有括号的,先算乘法,再算加减法。如果只有加减法的,按从左往右的顺序计算。
6、整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
7、圆的面积公式:
圆所占平面的大小叫做圆的面积。πr^2;用字母S表示。一条弧所对的圆周角是圆心角的二分之一。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
8、周长计算公式
(1)已知直径:C=πd。
(2)已知半径:C=2πr。
(3)已知周长:D=c/π。
(4)圆周长的一半:1/2周长(曲线)。
(5)半圆的周长:1/2周长+直径(π÷2+1)。
8. 小学六年级数学考试注意事项
1.对于含多步计算的解决问题,除了个别特殊题目外,基本上不是分步记分的,而是着重分析学生的整体解题思路是否正确,所以教师在平时教学的过程中不要为了提高得分率而硬性规定所有的学生都要分步列式,这样会降低一部分能力较强的学生的思维水平,应该由学生自主选择适合自己的方法。
2.解决问题重在考查学生的解题策略和解题思路,所以在解决问题的题目中计算分数所占的比例较小。比如:一道5分的解决问题,如果列式都是正确的,只是计算结果错误,那么只减掉1分(不管错了几个结果,都只减掉1分。)
3.一定要特别重视计算结果的单位名称和答题。
首先,单位名称漏写一个减掉0.5分,答语不完整减0.5分。比如:求“28元够买这些商品吗?”这样的题目,如果学生最后的答语是“够”或者“不够”就属于答题不完整,要减掉0.5分。如果学生把单位名称写错了,要视情况酌情减分。另外单位名称一定要写在小括号里。
第二,答语错误或者不写答语,视题目内容特点减掉该题总分数的一半,或者不给分。比如:求“28元够买这些商品吗?”这样的题目,如果正确的答语应该是“28元够买这些商品”,可是学生却写成了“28元不够买这些商品”,对于这样的答语错误,即使学生的列式和计算完全正确,也只能不得分或者得一半分;如果学生列式和计算结果都是正确的,但是没写答语“28元够买这些商品”或者“28元不够买这些商品”,说明此题没有结论,则不得分或者得一半分。
9. 小学六年级数学该怎么辅导
小学6年级数学辅导怎样做?数学在大部分人的眼中是一科较难的科目,并且跟随年级的增长也逐步变难,正因为这样数学是被拉分的科目.好多学生以为数学就是练习,以为练习好多,得分就会升高.其实有一个关键因素在阻碍我们数学得分的升高,那就是好的学习习惯.
小学6年级数学辅导需要帮助孩子建立的八种好习惯:
8、重复"检查"习惯.培养学生的考核能力习惯是提高数学学习质量的重要举措,这是培养学生自我意识和责任感的必要过程.小学6年级数学辅导只要从以上八点出发,相信孩子在很短的时间内会有惊人的进步.
10. 小学六年级上册数学考试要注意什么
考试考的就是心态,只要你静的下心来,就一定可以考好~祝你取得好成绩。。。
--------------------------------------------------------------------------------------------------
一、考前准备
1、把知识要点,以前考试中出错的地方,注意点认真看一遍。
2、准备好必要的文具及材料(笔、橡皮、胶带纸、直尺、三角尺、量角器、圆规、各种几何形体、剪刀、线等)。
3、注意饮食卫生,不吃生冷,过分油腻的食物。注意休息。
二、考试时注意
1、拿到试卷后,认真阅读试卷,注意试卷量,难易程度,以及合理安排考试时间。
2、做每一道题目时,都要认真细致读题,弄清题意及要求,分析清楚数量关系后再动笔。(审题时要注意单位名称是否一致,把谁看作单位“1”,量和率的对应,谁多谁少,是什么形体,求的是什么……)。
3、认真细心地计算,能简算的要算简,不能简算不要瞎算。求未知数X要检验,保证计算的正确性。
4、选择题要反复比较,慎重选择。(注意排他法)
5.(1)读数写数时要分级读写,注意改写与省略的区别,后面加“亿万”字。
(2)单位名称改写,注意记清进率,是乘还是除以进率,尤其是时间单位,并注意小数点移动的位置。
(3)约数、倍数这部分内容,要注意概念,考虑问题要细致、全面、周密。(可把字母换成数字)、(1既不是质数也不是合数,2既是偶数也是质数)。
(4)求分率、百分率要找准标准量和比较量,弄清谁除以谁。
(5)求三角形,平行四边行面积时要注意底和高的对应。三角形、梯形面积别忘记“X1/2”。注意周长和面积的区别。
(6)形体知识要注意求的是面积还是体积、容积,求面积是几个面的面积,属于哪一种情况,注意数据的对应,注意是根据体积求重量还是根据面积求重量,求圆锥的体积别忘记“X1/3”。
(7)比较大小时要注意排列的方向。
(8)注意要填最简分数和最间整数比。
6、文字题中要注意除和除以的区别,注意加括号,弄清谁多谁少。
7、操作题要看清要求,规范操作。(注意直角标记,作图时是否要标数字及单位)。
8、应用题要分析清楚数量关系(提倡画线段图,用实物演示等),解题方法要灵活多样(注意用方程、比例解),计算同样要非常细心。比例应用题要先判断清楚成什么比例,再解答。
9、探索开放题要从简单事例入手,寻找规律,结合生活实际,仔细分析思考再解答。
10、做题要注意先易后难,会做的先做,不会的最后设法解决,不要一开始就在一些题目上浪费过多时间。
11、做好后要认真细致检查、验算,珍惜时间,不浪费一分一秒。
12、注意掌握一些常见的数量关系及变化关系式。
总路程=速度和×相遇时间 平均数=总数量÷总份数
工作时间=工作总量÷工作效率 重量=比重×体积
折扣=卖你÷原价 利息=本金×利率×对应时间
应纳税额=应纳税所得额×税率(注意是否交利息税)
三角形的内角和是180。 a×b=c×d a:c=d:b
等式中,一个不为0的数乘的数越大,这个数越小。