Ⅰ 数学因式分解的12种方法
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(1)a+c=b+c
(2)a-c=b-c
性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c 或a/c=b/c
性质3:若a=b,则b=a(等式的对称性)。
性质4:若a=b,b=c则a=c(等式的传递性)。
Ⅱ 因式分解解题格式
因式分解并不难,分解方法要记全,各项若有公因式,首先提取莫迟缓,各项若无公因式,套用公式来试验。
如果是个二项式,平方差公式要领先,如果是个三项式,完全平方想周全,以上方法都不行,运用分组看一看,面对二次三项式,十字相乘求方便,能分解的再分解,不能分解是答案。
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
分解一般步骤
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
1、如果多项式的首项为负,应先提取负号;2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;3、如果各项没有公因式,那么...
因式分解与整式乘法是互为关系。因式分解是把一个多项式写成几个整式积的形式(和变积),而整式乘法是把整式的积写成多项式(积变和)。从这一点(即...
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,因式分解的方法有十字相乘法、提公因式法、待定系数法等。
在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式因式分解的步骤是先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组...
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解
初中数学因式分解的方法有待定系数法、提公因式法、十字相乘法等等
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
Ⅲ 因式分解的几种常用方法
1、因式分解要分尽,就是分到不能再分才截止,因为因式分解是为学习分式做准备的,分的详细便于约分和下一步计算。
2、要有整体思维,因为在平方差和完全平方公式中,很多题是需要把一部分看做整体的,要具备这样的思维和眼光。
3、做题的时候要像下象棋一样,要看到三步以后的情况,不能埋头提取公因式,之后无法继续做下去。
方法一:提取公因式,这个方法是进行因式分解的第一步。
要牢记三个原则:1、提取公因式要一次性提取干净,否则后患无穷。
2、可能要多次提取或是连续提取。
3、注意提取多项式时正负号 的变化。
方法二:公式法,这是最主要的方法,最常考察的方法。第一要对公式熟悉,不然一切无从谈起;第二有能力者可以试探运用立方差和立方和公式。
方法三:十字相乘法,这不仅仅是一种方法,而是一种思维方式,到二次函数你就知道它的重要性了。而有的教材已经减负删掉了,可惜至极。当然了双十字相乘就不要探讨了,一般情况下涉及不到。
方法四:分组分解法。这个方法更是考察学生的分类分组思维,很多题可以有多种分组形式,但方法各有难易,学生可自行摸索,其乐无穷!
方法五:换元法。这也是一种思维方式,为将来高中数学换元类型题提供实验场地和模拟演练,当然难度相对较大,不过这是解决高次因式分解的不二法门。
Ⅳ 如何巧做因式分解
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,和我们小学里学的因数分解很类似。
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止,就像把8进行因数分解的时候,不能写成8=2*4,这里的4还可以再分解成为2*2,所以要写成8=2*2*2。
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如ab+ac,因式分解时要写成a(b+c);
8、考试时一般就要化到实数,在实数范围内因式分解,因为在初中,实数范围是最大的。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
不叫提公因式,因为括号内不得用分数。
Ⅳ 因式分解例题及过程是怎么样的
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。
解析:
x²-y²=(x+y)(x-y)
x³-y³=(x-y)(x²+xy+y²)
解法:
1、提取公因式法:4ab+2a=2a(2b+1)
2、公式法:a^2+2ab+b^2=(a+b)^2
3、分组分解法:4ab+2a+8ab+4a
=(4ab+2a)+(8ab+4a)
=2a(2b+1)+4a(2b+1)
=(2b+1)(2a+4a)
=6a(2b+1)
4、十字相乘法:3a^2+2a-1=(3a-1)(a+1)
Ⅵ 分解因式的方法与技巧是什么
1、提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
注意事项
1、等式左边必须是多项式;
2、分解因式的结果必须是以乘积的形式表示;
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
4、分解因式必须分解到每个多项式因式都不能再分解为止。
Ⅶ 因式分解怎么做八年级,好急!!!!
理解因式分解应注意几点:
因式分解的对象是多项式,不是多项式不能分解;
因式分解是恒等变形,不是计算;
分解的结果是整式积的形式。
初中数学的因式分解法主要有两种,一种是提公因式法,二是公式法。至于十字相乘法一般并不做硬性要求。分解因式时,首先应考虑是否具有公因式,如果有公因式,需要先提出公因式,再考虑是否能用因式分解。
在实际计算中,因式分解时需要注意如下几点:
对于有互为相反数的因式,需要提负号变成公因式;
提公因式时,若有一项被全部提出,括号内的项应保留1,而不是0;
一定要分解到不能分解为止,对于能化简的因式要化简。
Ⅷ 因式分解怎么做
这道题用十字相乘法按图片那样子解答