1. 人教版高中教材要怎么买
现在教材确实很多版本,不过这问题很好解决.你到书店找你们省(或者特殊的市)出版的必修的教材就可以了.至于选修,就没必要提前预习了.至于练习册,我就是个数学老师,但我不提倡滥买资料.题海战术对你以后的学习没有好处.
还有,你现在是预习.要么你是自学,最多你请人辅导.那么,基础要打牢固.而你所买的教科书上的习题,全部都是真正的专家千挑万选的非常突出所学内容的典型题目.这些对你把握基础是最好的选择.所以暂时不推荐你买习题.
至于比较好的练习:一般基础学生看一下<学海导航> 基础较优秀的你可以看看<优化训练>
2. 全日制培智学校初中数学课本在哪里买
一般是 在本地新华书店发行教材的门市部
3. 在哪可以买得到人教版教科书
在各大运营书店可以买到人教版教科书,例如新华书店、国华书店、晶振书店、威海书店等书店都可买到。补充:人民教育出版社成立于1950年,其前身是华北联合出版社,上海联合出版社和华北教科书编审委员会,1961年与高教出版社合并,是教育部直属的主要从事基础教育教材和其他各级各类教材、教育图书的研究、编写、出版、发行的专业出版社。
2014年,人教版第十套教材,即按照教育部新课程标准研究、编写的21世纪义务教育全套新教材正在陆续出版之中,其中一部分已在教育部确定的实验区进行实验。建社至今,累计出版各种出版物万余种,总印数达数百亿册。
(3)人教版培智学校数学教材哪里买扩展阅读:
“人教版”一般是就教科书意义而言的,是相对于其他出版社出版的教科书而言的。如长春出版社出版的教科书称为“长春版”、广东教育出版社出版的教科书称为“粤教版”、上海教育出版社出版的教科书称为“沪教版”。可见所谓“人教”指的是“人民教育出版社”,所谓“版”指的是教科书版本,而非“出版社”的“版”。
因此,“人教版”指的是由人民教育出版社出版的教科书版本。比如我国中小学教育辅导报刊中,《语文报》、《中学生学习报》、《学苑新报》等均有着不同版本的教辅报纸,诸如人教大纲版、人教新课标版等。这两个版本名称均是配合由人民教育出版社出版的教科书的报纸,是新课改前后的版本名称。随着新课改的深入,前者逐渐退出历史舞台,后者便统一称为人教版。本套教科书是由课程教材研究所与xx(科目)课程教材研究开发中心编着,由新华书店集团发行。
4. 想买人教版高中教材要去哪里买
淘宝输入人教版高中教材,一大堆可以选择。另外也可以去大的书店买。
5. 我要自学数学,请问:在哪里能买到数学教材呢
按道理不可能找不到吧,首先你要搞清楚你要学数学做什么,是自考还是?要是自考你要查当地考的是啥出版社的教材,不要买错了,要是你只是想自己买来学习而不是为了考试,那么某宝某东某当一搜一大堆,没理由找不到的,建议你去试试
6. 哪个书店能买到人教版教材
一般大城市里新华书店都是有的就是买教材的区域里,但不全是人教版的,卖的都是和当地学校教学统一的教材。
你也可以跟人教出版社联系一下,人教版书后面都有联系电话的。。
7. 哪个网站可以找到并能购买人教版的小学生教材
小学生六年级下学期语数外课哪里有购的,要人教版的
8. 学校的教材哪里可以买得到
学校的教材一般大型书店就有卖。
教材又称课本,它是依据课程标准编制的、系统反映学科内容的教学用书,教材是课程标准的具体化,它不同于一般的书籍,通常按学年或学期分册,划分单元或章节。它主要是由目录,课文、习题、实验、图表、注释和附录等部分构成,课文是教材的主体。
教材相关:
据不完全统计,截止到2020年12月,在用的全国各级学历教育教材已近19万种,其中,基础教育类教材近1万种,职业教育与继续教育类教材近8万种,高等教育类教材近10万种。
“十三五”期间,我国正式出版的、版权页标注“教材”字样的高校新增教材数量达4.3万余种。
9. 在哪里可以买到小学数学人教版教材
去明月桥那边的发行部,火车桥下面。那边可以买到。也可以请学校的老师联系追加
10. 在网上如何能够买到人教版高中数学教材
在淘宝网,当当网就可以买到,直接送到家,很方便。
高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
公式口诀
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用
1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集
《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
高中《立体几何》
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。