‘壹’ 高中数学的答题技巧有哪些
1、函数
函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。
3、初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
4、选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法。
5、参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
‘贰’ 如何学好高中数学函数
一、教给学生阅读课本的方法
1.对于识字不多,思考能力有限的低年级的学生来说,应采取在老师指导下讲解和阅读相结合的办法。如对刚入学的小朋友,首先要帮助他们初步了解数学课的特点,知道数学课要学习哪些知识,看数学课本的插图时要看清、数准图上各种东西的个数。接着教他们学会有顺序地阅读教科书,即要从上到下,从左往右地看;教学10以内数的认知看主题图时,要学会先整体后部分地看。又如,低年级教材中的知识是用各种图示表示的,教师要把指导重点放在帮助学生掌握看图方法上,努力使他们做到四会:一要会看例题插图,能比较准确地进述图意;二要会看标有思维过程的算式,看懂计算方法;三要会看应用题的图示,能根据图示理解题意,搞清数量之间的关系、思考解答方法;四要会看多种练习形式,懂得练习题的要求。
2.对于已积累了一定的知识和具有一定能力的中年级学生来说,教师可采用半工半读半扶半放的方式进行培养。如教师既可先讲后读,具体指导学生阅读课本的方法;也可骗制阅读提纲,让学生带着提纲阅读课本,寻找答案,帮助学生理解教材。
3.对于具有一定自学能力的高年级学生来说,则可采取课前预习、启发引导、独立阅读的办法。如指导预习时,教师对学生要有明确的要求,要有预习的范围,要提出必要的思考题或实验作业,要检查预习情况。课堂上教师可以放手让学生去读读、讲讲、论论、练练的方式进行自学与讨论,要求他们在把握知识的基础上理清知识体系,进一步提高认知水平。
二、教给学生科学的记忆方法
1.理解记忆法。就是通过学生的积极思维,依据事物的内在联系,在理解的基础上去记忆的方法。如:什么叫梯形。首先让学生通过认真观察,理解“只有一组对边”是什么意思,若把“只”字去掉又会怎样。通过积极思考,学生认知到“只有一组对边平行”就是四条边中相对的两条边为一组,其中一组平行,另一组不平行。这样学生在理解的基础上记忆梯形这个概念就容易了。
2.规律记忆法。就是寻找事物内在规律,抓住其规律帮助记忆的方法。数学知识是有规律的,只要引导学生掌握其规律,就可以进行有效记忆。例如:记忆长度、面积、体积单位进率。因为长度单位相邻之间的进率是10,面积单位相邻之间的进率是100,体积单位之间的进率是1000。掌握了这个规律记忆就比较容易。
3.形象记忆法。就是借助事物的形象或表象进行记忆的方法。小学生的思维以形象思维为主,逐步向抽象思维发展。在教学中,教师讲课时要注意生动、形象,以唤醒学生对事物的表象,进行形象记忆。例如,一年级数的认知教学时,老师把数与某些实物形象记忆:把“2”比作小鸭子、“3”比作耳朵等。
4.比较记忆法。这是把相似、相近的数学材科学的进行对比,把握它们的相同点与不同点,加强记忆的一种方法。例如,整除与除尽,质数与互质数等,在学生理解后,引导学生进行比较记忆。
5.类比联想记忆法。是指对某一事物的感知或回忆引起性质上相似的事物的回忆的方法。例如,让学生记忆分数的基本性质时,引导学生联想除法的商不变性质和除法与分数的关系,那么分数的基本性质就不难记忆了。
6.归纳记忆法。是把具有内在联系的知识集中起来,组成系统,形成网络的记忆方法。你如,有关面积知识,学生是跨越几个年级才全部学完。这些图形有特征上的不同,也有公式上的区别。零敲碎打获得的知识,必须给予系统上的整理,才能保证这部分知识本身固有的整体性。可以通过下面网状图形,把这些图形的内在联系揭示出来,这样有利于学生进行系统记忆。
三、教给学生复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精练概括、牢固掌握的目的。学生对数学知识的学习,是包括一堂堂数学课累积起来的,因而所获得的知识往往是零碎的和片面的,时间一长,就会出现知识链条的断裂现象。基于这一点,单元复习和总复习都是很重要的。小学数学教学中,复习的方法主要有以下几点:
1.概括复习。学生每学完一个小单元或一个大单元,就组织他们对于知识体系进行一次再概括,理出纲目,记住轮廓,列出重点,帮助他们掌握单元的主要内容。
2.分类复习。引导学生把学过的知识和技能进行分类整理、分类比较,以加强知识的内在联系和知识的深度、广度,帮助学生加深理解与记忆。
3.区别复习。把学过的相似的概念、规则等,如以区别、比较,掌握知识的特征。总之,一方面,复习要在理解教材的基础上,沟通知识间的内在联系,找出重点、关键,然后提炼概况,组成一个知识系统,从而形成或发展扩大认知结构;另一方面,通过复习,不断地对知识本身或从数学思想方法角度进行提高与精炼,是有利于能力的发展与提高的。
四、教会学生整理与归纳的方法
整理知识是一项主要的学习方法。小学数学知识,由于学生认识能力的原因,往往分若干层次逐渐完成。一节课后、一个单元后或一个学期后,需要对所学知识进行整理与归纳,形成良好的认知结构,便于记忆和运用。
1.把知识串成“块”,形成知识网络。
小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
2.系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
五、教给学生知识迁移的方法
迁移是指已获得知识、技能乃至方法和态度对学习新知识新技能的影响。先前学习对后继学习起积极、促进作用的,纠正迁移,反之纠负迁移。人们在解决新课题时,总是利用已有的知识技能去寻找解决问题的方法。数学是一门逻辑性、严密性极强的学科,它的知识系统性强,前面的知识是后面的基础,后面的知识是前面知识的延伸与发展。所以教师必须紧紧抓住前后知识的内在联系,教给学生知识迁移的方法。
‘叁’ 函数怎么学从什么地方开始学
最简单的函数学习方法 学习函数一定要多加练习,熟悉基本的知识点,才能做更难得数学函数题。 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式: 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和) 怎样才能学好数学函数 认真思考,用函数的观点看方程有了前面积累的比较扎实的基本功,第三阶段要好好动动脑子了,思考:函数和方程到底有什么关系? 这可以先从一次函数来入手分析。考虑:一次函数和方程,,之间的关系?当然,这要从函数图象上来分析,一次函数图象是条直线,它是由无数个点组成的,也就是存在无数个数对(x,y)。 我们知道,对于自变量的每一个值,y都有唯一确定的值与之对应。同样不难发现:对于y的每一个值(例如上面的0,2),自变量也有唯一的值与它对应,这个值实际上也就是方程,的解。 也可理解为求直线与直线(x轴),或与直线交点的横坐标。对于方程则可以理解为当自变量为何值时两条直线与它们的y值一样,也就是求两条直线交点的横坐标。
‘肆’ 高一数学函数有那些解题技巧>
根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
三、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
四、《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
高中数学知识口诀
方利用程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
七、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
八、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
‘伍’ 数学函数题怎么分析
从能入手的地方进入,把能求出来的都求出来,放在一边,再找问题(倒这分析题),从问题入手,看缺少怎样的条件,再求出来,统筹以下,就是答案
‘陆’ 高中学习阶段,数学的函数问题总是学不好,掌握这个知识点的关键是什么
函数章节是高中数学必修的章节,也是最重要的章节,高考150分中只有立体几何和概率统计跟函数没关系,其它全都与函数相关,所以函数至关重要,只有函数学好了,才有机会提升你的分数。
‘柒’ 高中数学要怎么总结解题方法
高中数学解题思路与技巧总结
(1)函数
函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
(2)方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
(3)初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
(4)选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法;
(5)参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
(6)恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
(7)圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
(8)曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
(9)离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
(10)三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
(11)数列问题
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
(12)立体几何问题
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
(13)导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
(14)概率
概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
(15)换元法
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
(16)二项分布
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
(17)绝对值问题
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
(18)平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
(19)中心对称
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
六种解题思路:
1.函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型
(1)“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
(2)“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
(3)“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4.转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
常见的转化方法
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
(7)坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5.特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
6.极限思想
极限思想解决问题的一般步骤为:
一、对于所求的未知量,先设法构思一个与它有关的变量
二、确认这变量通过无限过程的结果就是所求的未知量
三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以归纳总结,以便在考试中游刃有余。