导航:首页 > 数字科学 > 数学建模的关键步骤是什么

数学建模的关键步骤是什么

发布时间:2022-08-02 19:52:21

1. 数学建模的七个步骤

数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:

明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。

合理假设的作用除了简化问题,还对模型的使用范围加以限定。

作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。

为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。

要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。

5、分析检验

在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

一般误差有以下几个来源,需要小心分析检验:

模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。

相关阅读

数学模型和数学建模介绍

数学建模常用的

2. 数学建模方法和步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。

3. 数学建模5步建模发的五个基本步骤是什么

所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:

第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。

第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。

第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。

第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?

第五步:按数学模型求出结果

4. 数学建模的关键步骤和核心步骤是什么

定性定量,建立公式

5. 数学建模的基本工作流程

1)建模准备
数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。“什么是问题?问题就是事物的矛盾,哪里有没解决的矛盾,哪里就有问题”。因此发现课题的过程就是分析矛盾的过程贯穿生产和科技中的根本矛盾是认识和实践的矛盾,我们分析这些矛盾,从中发现尚未解决的矛盾,就是找到了需要解决的实际问题,如果这些实际问题需要给出定量的分析和解答,那么就可以把这些实际问题确立为数学建模的课题,建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对。

(2)建模假设
作为课题的原型都是复杂的、具体的,是质和量、现象和本质、偶然和必然的统一体,这样的原型,如果不经过抽象和简化,人们对其认识是困难的,也无法准确把握它的本质属性。建模假设就是根据实际对象的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。对原型的抽象、简化不是无条件的,一定要善于辨别问题的主要方面和次要方面,果断地抓住主要因素,抛弃次要因素,尽量将问题均匀化、线性化,并且要按照假设的合理性原则进行,假设合理性原则有以下几点:
①目的性原则:从原型中抽象出与建模目的有关的因素,简化掉那些与建模目的无关的或关系不大的因素。
②简明性原则:所给出的假设条件要简单、准确,有利于构造模型。
③真实性原则:假设条件要符合情理,简化带来的误差应满足实际问题所能允许的误差范围。
④全面性原则:在对事物原型本身作出假设的同时,还要给出原型所处的环境条件。

(3)模型建立
在建模假设的基础上,进一步分析建模假设的各条件首先区分哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系,建立各个量之间的等式或不等式关系,列出表格、画出图形或确定其他数学结构,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的数学模型。

在构造模型时究竟采用什么数学工具,要根据问题的特征、建模的目的要求以及建模者的数学特长而定 可以这样讲,数学的任一分支在构造模型时都可能用到,而同一实际问题也可以构造出不同的数学模型,一般地讲,在能够达到预期目的的前提下,所用的数学工具越简单越好。

在构造模型时究竟采用什么方法构造模型,要根据实际问题的性质和建模假设所给出的建模信息而定,就以系统论中提出的机理分析法和系统辨识法来说,它们是构造数学模型的两种基本方法。机理分析法是在对事物内在机理分析的基础上,利用建模假设所给出的建模信息或前提条件来构造模型;系统辨识法是对系统内在机理一无所知的情况下利用建模假设或实际对系统的测试数据所给出的事物系统的输入、输出信息来构造模型。随着计算机科学的发展,计算机模拟有力地促进了数学建模的发展,也成为一种构造模型的基本方法,这些构模方法各有其优点和缺点,在构造模型时,可以同时采用,以取长补短,达到建模的目的。

(4)模型求解
构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解。

(5)模型分析
根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等。

(6)模型检验
模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果 目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力。

(7)模型应用
模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验 因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。

以上介绍的数学建模基本步骤应该根据具体问题灵活掌握,或交叉进行,或平行进行,不拘一格地进行数学建模则有利于建模者发挥自己的才能。
关于软件有matlab lindo 等

6. 数学建模的步骤是什么

一是读懂题意,二是选择合适的数学模型,如方程(组)、不等式、函数等。 三是分析数学模型(如极值,增减性等)。 四是利用此模型解决实际问题。

7. 数学建模步骤

摘要
摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。
摘要是全文的精华,摘要应当点明:
(1) 模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)
(2) 建模的思想(思路)
(3) 算法思想(求解思路)
(4) 模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)
(5) 主要结果(数值结果,结论)(回答题目所问的全部“问题”)
注意表述一定要准确、简明、通顺、工整,务必认真校对。
1. 问题重述
把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。
2. 模型假设
根据评卷原则,基本假设的合理性占重要比重。
应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。
3. 模型的建立
(1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明
(2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。
(3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。
4. 模型求解
(1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2) 需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。
(3) 计算过程,中间结果可要可不要的,不必列出。
(4) 设法算出合理的数值结果。
5.模型的结果
(1) 最终数值结果的正确性或合理性是第一位的;
(2) 对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进;
(3) 题目中要求回答的问题,数值结果,结论,必须一一列出;
(4) 考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据;
(5) 结果的表示要集中,醒目,直观,便于比较分析
(6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
6.模型评价
(1)说明特色,优点突出,缺点不回避。
(2)改变原题要求,重新建模可在此做。
(3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。
7.参考文献
按规定列出。
8.附录
(1)主要结果数据,应在正文中列出。
(2)数据、表格,可在此列出,但不要错,错的宁可不列。

8. 数学建模的步骤

数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。

9. 数学建模具体流程是什么

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

全国大学生数学建模竞赛章程
(一九九七年十二月修订)
第一条 总则
全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与
应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励
学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际
问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养
创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
第二条 竞赛内容
竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,
不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题
目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一
篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析
和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建
模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛一般在每年9月末的三天内举行。
3.大学生以队为单位参赛,每队3人,专业不限。研究生不得参加。每队可设一名指
导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参
赛队员,不得进行指导或参与讨论,否则按违反纪律处理。
4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,
但不得与队外任何人(包括在网上)讨论。
5.
工作人员将密封的赛题按时启封发给参赛队员,参赛队在规定时间内完成答卷,
并准时交卷。
6 .参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛
的规范性和公正性。
第四条 组织形式
1.竞赛由全国竞赛组织委员会主持,负责每年发动报名、拟定赛题、组织全国优秀
答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。全国竞赛组委会每届
任期四年,其组成人员由国家教委高教司和中国工业与应用数学学会负责确定。
2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区
应至少有6所院校的20个队参加(每所院校至多10个队)。邻近的省可以合并成立
一个赛区。每个赛区建立组织委员会,负责本赛区的宣传发动及报名、监督竞赛纪
律和组织评阅答卷等工作。组委会成员由各省(自治区、直辖市)教委、工业与应
用数学学会的同志及有关人士组成(没有成立地方学会的,由各地教委与全国竞赛
组委会指定的院校协商确定),报全国竞赛组委会备案,并保持相对稳定。未成立
赛区的各省院校的参赛队可直接向全国竞赛组委会报名参赛。
3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,
以参赛(相对)校数和(绝对)队数、征题的数量和质量、无违纪现象、以及与
全国组委会的配合等为主要标准。
第五条 评奖办法
1.各赛区组委会聘请专家组成评阅委员会,评选本赛区的一等、二等奖(也可增设三等奖),
获奖比例一般不超过三分之一,其余凡完成合格答卷者获得成功参赛奖。
2.各赛区组委会按规定的比例将本赛区的优秀答卷送全国竞赛组委会。全国竞赛组委
会聘请专家组成全国评委会,按统一标准从各赛区送交的优秀答卷中评选出全国一等、
二等奖,获奖比例为全国参赛队数的百分之十左右。
3.全国与各赛区的一、二等奖均颁发获奖证书。竞赛成绩记入学生档案,对成绩优秀的参
赛学生,各院校在评优秀生、奖学金及报考(或免试直升)研究生时应予以适当考虑。
对指导教师的辛勤努力应予以表彰。
4.参赛队的指导教师一律不得参加本赛区及全国的评阅和决定获奖名次的工作。
5.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。对所在院校要予以
警告、通报,直至取消该校下一年度参赛资格。对违反评阅答卷和评奖工作规定的赛区,
全国竞赛组委会不承认其评奖结果。
6.设立异议期制度,具体内容见《全国大学生数学建模竞赛异议期制度的若干规定》。
第六条 经费
1.参赛队向各赛区组委会交纳报名费。
2.赛区组委会向全国组委会交纳一定数额的经费。
3.各级教育管理部门的资助。
4.社会各界的资助。满意还望采纳

10. 数学建模有哪些步骤

所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:

第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。

第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。

第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。

第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?

第五步:按数学模型求出结果。

第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。

阅读全文

与数学建模的关键步骤是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069