导航:首页 > 数字科学 > 数学建模的模型怎么训练

数学建模的模型怎么训练

发布时间:2022-08-03 06:30:09

⑴ 数学建模的步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。
希望能解决您的问题。

⑵ 如何培养数学建模能力

新课标下如何培养学生的数学建模思想
数学模型是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表示出来的一种数学结构。初中数学中常见的建模方法有:对现实生活中普遍存在的等量关系(不等关系),建立方程模型(不等式模型);对现实生活中普遍存在的变量关系,建立函数模型;涉及图形的,建立几何模型;涉及对数据的收集、整理、分析,建立统计模型……这些模型是常见的,并且对它们的研究具有典型的意义,这也就注定了这些内容的重要性。在中学阶段,数学建模的教学符合数学新课程改革理念。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。学生通过观察、收集、比较、分析、综合、归纳、转化、构建、解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,感受到数学的广泛应用。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,使学生能成为学习的主体。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。下面谈谈建模思想在初中数学教学中几种常见的应用类型。
一、 方程思想
新课标要求能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界中的一个有效的数学模型。这即是方程的思想在初中数学中的应用,它要求我们能够从问题的数量关系入手,运用数学语言将问题中的条件转化为方程(组),然后通过解方程(组)使问题获解。例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理?此题是华东师大出版的数学(九年级上)课本P38习题第9题。它考查了同学们在现实生活的背景中理解基本数量关系的能力。
显然,方程的思想就是把未知量用字母表示和已知量一起参与建立等式,构造方程的方法来解决问题,体现了未知和已知的统一。所以,在建立方程模型时,应着重培养学生如何学会寻找问题中的已知量、未知量的关系建立方程。随着课改的深入,数学命题更重视以社会热点,焦点和日常生活中熟悉的事实为背景,构建一个有鲜活背景,与社会,生活相关的数学应用题。因此,在课堂教学中,教师应引导学生关注生活,生产中的数学问题,尽可能给学生提供合适的问题,鼓励学生积极参与解决问题的活动,自己去探索,研究,从而强化应用数学的意识,并且具备把实际问题转化为数学问题的能力,使学生领会数学建模的思想和基本过程,提高解决问题的能力和信心。
二、不等式(组)的思想
同样的,数学建模思想用于不等式(组),新课标提出了类似的要求。不等式(组)的思想即从问题的数量关系出发,运用条件将问题中的数量关系转化为不等式(组)来解决。
例:某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位。
1) 设原计划租用48座客车x辆,试用x的代数式表示这两个年段学生的总人数。
2) 现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位,请你求出该校这两个年段学生总人数。此题便可通过构建不等关系得以解答。
三、 函数思想
新课标提出,能用适当的函数表示法刻画某些实际问题中变量之间的关系变化,结合对函数关系的分析,尝试对变量的变化规律进行初步预测,能用一次函数,二次函数等来解决简单的实际问题。在学习了正、反比例函数、一次函数和二次函数后,学生的头脑中已经有了这些函数的模型。因此,一些实际问题就可以通过建立函数模型来解决
例:某中学要印刷本校高中录取通知书,有两个印刷厂前来联系制作业务。甲厂优惠条件是每份定价1.5元,八折收费,另收900元制版费;乙厂的收费条件是每份定价1.5元的价格不变,而制版费900元则六折优惠,且甲、乙都规定,一次印刷数量至少是500份,如何根据印数数量选择比较合算的方案?若印刷数量为2000份,应选择哪个?费用是多少?
方案设计题是基础知识与基本技能结合比较紧密的一类应用题。此题不仅充分运用了函数的思想,又用到分类讨论思想。其形式上表述生产、销售、规划等问题十分贴近生活,是近年来中考热点问题。
四、 统计思想
在当前的经济生活中,统计知识的应用越来越广泛。而数学建模思想的应用在统计学方面的研究得到很好的体现。如新课标明确提出:体会用样本估计总体的思想。例:在某树林中100平方米的面积上统计有8棵红枫树,整个树林面积为10000平方米,你能估计整个树林共有多少棵枫树吗?
由以上几种常见数学模型的建立,可以发现数学模型的建立过程大致有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解.因此,在实际课堂教学中,教师应以学生为主体,充分引导学生注意观察生活中的各种现象,充分利用教材的优势,创造性使用教材,努力创设合适的问题情境,让学生投入到解决问题的实践活动中,自己去探索,经历数学建模的全过程,初步领会数学模型的思想和方法,增强数学应用意识,提高学生的创新能力,养成良好的思维品质,使学生学到有用的数学,学到不同的数学。

⑶ 怎样学好数学建模

数学建模知识应该具备的数学基础有高等数学、线性代数、概率论与数理统计,在此基础上重点看一下运筹学的书籍。当然,数学建模不仅仅是要求数学知识扎实,还需要参赛者广泛涉猎知识(包括物理、生物、心理学等),因为许多数学建模题目要求背景知识比较深,比如说12年MCM
A题要求画出一棵树,这就需要参赛队员了解某类植物树叶生长具备的特点,涉及生物学知识;第二届MATHORCUP全球数学建模挑战赛A题也涉及到空气动力学知识。因此,数学建模是以数学为基础,综合各门学科(涵盖自然科学和社会科学)的一项赛事。
具备上述基础知识以后,就着重看一些建模方面的书籍,如:赵静和但琦的《数学建模与数学实验》、姜启源和谢金星的《数学模型》、《运筹学》、肖华勇的《实用数学建模与软件应用》。每一本书都有自己的特色,也没必要仔仔细细地把整本书都看完,甚至你可以只知道模型的大致步骤,真正用到的时候再翻书详细了解这个模型。因为数学建模本身就是一个学习的过程,在短短3天时间里,将陌生的知识转化成自己的知识是具有挑战的,更何况还要对模型进行改进,但是正是这样,我们才能不断接触新知识,不断培养自己的学习能力。
熟悉模型之后,基本能够看懂大部分的优秀论文了。个人认为看一些“高教杯”特等奖论文及美赛Outstanding对自己思路、知识、写作能力提升非常快,这些论文一般逻辑性很强,层次感出众。在欣赏优秀论文的过程中,还要注意模型的适用范围,举个例子来说,对于预测类的题目,比较常用的预测模型有时间序列模型、灰色预测模型、贝叶斯预测模型、神经网络预测模型等,这些模型并不是对所有的数据都是适的,有些模型需要先对数据进行剔除、平均等处理,这些细节需要特别注意,一旦不注意就会影响整篇论文的量。
上述三步进行之后,接下来就是实战演练了。参加完后主动找组委会要评语(因为那些评语里记录着你的不足,便于今后改正)。

⑷ 能教教我怎么做数学建模吗,我要参加这次的数学建模竞赛了,但没思路

数学建模要有三个人协同合作,他们分别负责写作、建模和编程。看个人爱好和擅长选择自己的工作。写作的要有比较好的语言表达能力;编程的要把matlab、lingo、spss或C++学好,特别是matlab尤其重要;建模的要有很好的逻辑思维能力及数学功底,思路要开阔。希望今年能成功!

⑸ 如何学好数学建模

数学建模是使用数学模型解决实际问题。
对数学的要求其实不高。
我上大一的时候,连高等数学都没学就去参赛,就能得奖。
可见数学是必需的,但最重要的是文字表达能力
回答者:抉择415 - 童生 一级 3-13 14:48

数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。

数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。

数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等

一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!

数模网 :http://www.shumo.com/main/

⑹ 如何准备数学建模呢 需要做那些准备呢

如何准备数学建模,需要做这些准备。第一,找一本有关建模的基础教程,第二,学会一门数学软件的使用,三,掌握科技论文旋涡状的写作方法。

数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,数学模型或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格
想要了解数学建模相关学习的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。中教在线的课程从零基础开始学习,从简单入门到后期成品出图老师带着你一步一步走过来,毕业后还有就业指导课程,助你解决面试难题,助教老师24小时在线答疑。

⑺ 数学建模的七个步骤

数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:

明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。

合理假设的作用除了简化问题,还对模型的使用范围加以限定。

作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。

为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。

要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。

5、分析检验

在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

一般误差有以下几个来源,需要小心分析检验:

模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。

相关阅读

数学模型和数学建模介绍

数学建模常用的

⑻ 数学建模怎么入门

数学建模入门方式如下:

①先看看书,最好一本国内的,一本国外的,数学建模书--推荐(数学建模(原书第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 叶其孝 姜启源 译),姜启源,编的那本可以)。--学习相关的软件和数学方法(MATLAB、Lingo、SAS等)--看些历年的题--做一些老题。
②如果参加数学建模竞赛,一定要分工明确,安排好各个环节大家的工作,而且要有领头的人,很多问题难以确定时,需要有人拍板的。
③参加国内赛,论文和解题的思路还是要比较严谨一些的好,解题的各个环节基本都要有,要比较完整才能得高分;美国赛就要尽情的放开思路,把奇思妙想都放进去,一些想法建立的模型复杂难解也没有关系,可以提出解题思路即可。全网招募小白免费学习,测试一下你是否有资格。

想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。成立于2010年2月,是国内从事互联网技能教商培训机构,生打3D建模、原画绘制、影视后期及设计类在线学习课程,为零基础入门学员提十全面立体的系统学习成长解决方案,致力于国内线上教育电业已有多年。

⑼ 数学建模怎么做啊

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

⑽ 如何培养学生的数学建模能力

如何培养学生的数学建模能力
所谓“高效教学” , 就是要最大程度地发挥课堂教学的功能和作用 , 即在课堂 45 分钟内要最大限度、最完美地完成教学任务、达成育人目标 , 在课堂有限的教学时间内完美地实现教育教学的三维目标整合 , 以求得课堂教学的最大效益。我认为 , 我们平时所说的“轻负担、高质量、向课堂教学要效益” , 就是“高效教学”这种课堂教学理念的反映。但是 , “高效教学”不仅仅是指知识的传授、技能的增进 , 而且还应该包括情感、态度和价值观等方面的要求。那么如何在初中语文教学中实施高效教学呢 ? 我认为应从以下几点做起 :
一、让学生带着问号走进教室
我们知道,新课程理念提倡自主学习,但是由于个性的差异,不同的学生有不同的学情,对问题的理解有时也不是仅仅靠自主学习就能解决的,所以课前预习过程当中难免会遇到各种各样的问题,而这些问题就是学生需要解决的问题,也是值得我们探究的问题。比如,我在布置学生自主学习《社戏》一课时,预设了这样的探究题:鲁迅先生笔下的那场戏好看吗?为什么?不少同学都认为好看,因为他们形成的共识是:要是不好看的话,鲁迅先生为什么还要写呢?甚至还把它作为文章的标题呢?实在没有必要。当然也有同学认为这样戏实在没有什么好看的,但是他们又说不出不好看的理由。这样就把一个带有探究性的问题带进了教室,无疑也就提高了他们听课的效率。 把一个带有探究价值的问题带进了教室,无疑也提高了他们听课的效率。问题是探究性学习的动力,是创新的基石。起初,同学们的问题意识比较薄弱,每天都是习惯以老师的问号进课堂,以铃声的响起为句号出课堂。为了避免这种传统的课堂教学模式,一开始我主动预设一些具有探究价值的问题让学生去思考、研究,然后让他们带着研究的成果走进教室。一段时间之后,同学们发现了老师预设探究性问题的规律,也就能自主设置一些很有价值的探究题,就能使教学效果较佳。
二、利用现代多媒体技术,丰富课堂,寓教于乐
网络已势不可挡地进入每个人的生活,也成为教学中必不可少的工具和资源。大部分中学生学习语文只是在课堂上,除此之外没有更多的时间去积累,现在的中学生很累,作业一天到晚都在做,但是语文学习更多的是在课外的大量阅读中积累,利用网络资源给学生创造一个这样的环境,必然会促进学生对语文的感悟和理解。教师可选择一些跟教材内容相关的电影、电视和新闻,可使学生既了解教材内容相关的风土人情、生活方式等,开阔视野,了解世界,这也是促进学生对语文重新认识,产生兴趣的好时机。教师可多搜集与教材相关的照片、漫画等,在适当的时刻呈现给学生,让学生集中注意力,活跃课堂气氛,提高学生的注意力和记忆力,促进学生语言表达能力的形成。利用网络选择适合学生的小游戏、诗歌、典故等,成立语文学习兴趣小组,积极开展语文学习活动,在班级通过语文演讲比赛、诗歌朗诵比赛、作文比赛等,可丰富学生课余生活,巩固课上学习内容,创造学习语文的良好环境和氛围,让学生在活动中,相互学习、相互帮助、追帮赶超、互相感染、交流沟通,共同提高语文学习效果,为打造高效课堂注入新的活力。
三、小组合作互动打造语文高效课堂
小组合作学习模式在课堂教学中的实施形式是各种各样的,可以根据学生的年龄特征、教学要求和教学目标,灵活组织。为此,我采用小组学习和班级学习相结合的方式,让学生尝试着解决所要达到的学习目标。4~6人为一组。如讨论《孔乙己》中孔乙己悲剧命运产生的原因时,先向学生阐明故事发生的时代背景及孔乙己的人生轨迹,在这一基础上通过小组讨论形成共识,使学生真正体会作者的写作意图。
其次合理划分合作小组。我们在构建合作小组时,遵循“组间同质,组内异质,优势互补”的原则,按照学生的知识基础、学习能力、性格特点的差异进行分组,每组6人。这样分组不但有利于学生间的优势互补,而且为全班各小组之间的公平竞争打下了基础。
最后明确小组成员分工。在小组互动学习中,小组成员必须分工明确,承担起自己应尽的责任。每个小组成员都是组长,只是分工不同。学习组长,主要是在课堂上安排学习任务,组织学生讨论,监督学习进程。作业组长,主要是收发作业并检查作业完成情况。小组成员既要积极承担个人责任,又要相互支持、密切配合,发挥团队精神,有效地完成小组学习任务。如翻译《狼》时,学习组长把每段分配给个人,然后大家一起翻译,疑难之处讨论交流,既加深了对课文的理解,又提高了学习效率。

阅读全文

与数学建模的模型怎么训练相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069