1. 初三一元二次方程配方法20道
配方法=平方差公式+完全平方公式。
2. 数学解方程配方法
1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方
5.求解: 用直接开平方法求解
6.整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5. (x-1.5)^2=0.25 (a^2+2a+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
3. 求30道配方法解一元二次方程数学题。
一、一元二次方程配方法例题:
配方法:
1、例题1:
用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b^2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
2、例题2:
用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2=
(3)数学配方程都有哪些扩展阅读:
一、一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础。
二、一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
三、解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
4. 数学配方法是什么配方法的步骤有哪些
通过配成完全平方式的方法,得到一元二次方程的根的方法.这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式.同时也是数学一元二次方程中的一种解法。
配方法的步骤
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式
2.移项:常数项移到等式右边
3.系数化1:二次项系数化为1
4.配方:等号左右两边同时加上一次项系数一半的平方
5.用直接开平方法求解 整理 (即可得到原方程的根)
代数式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
5. 一元二次方程配方法怎么配方
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
(5)数学配方程都有哪些扩展阅读:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y²= (b/2a)²。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x²+6x-3的顶点坐标。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以这条抛物线的顶点坐标为(-1,-6)
6. 数学中一元二次方程配方的方法具体是什么
1、定义:配方法就是将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
2、解一元二次方程的配方法:在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
3、 示例:【例】解方程:2x²+6x+6=4
4、分析:原方程可整理为:x²+3x+3=2,x²+2×3/2x=-1,x²+2×3/2x+(3/2)²=-1+(3/2)²,(x+3/2)²=5/4,x+3/2=±√5/2,即:x1,2=(-3±√5)/2。
7. 数学中配方的公式是什么
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
如果二次项系数不为一,先化为一,之后把常数项移到等号右边,最后在等号两边都加上一次项系数一半的平方,就可以了。
1、一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的;只有同一级运算时,从左往右;含有两级运算,先算乘除后算加减。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a
乘法交换律:a×b=b×a
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
8. 配方法的公式是什么
数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。
这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
举例如下:
2x²+8x+5=2(x²+4x)+5
=2(x²+4x+2²)+5-8
=2(x+2)²-3
(8)数学配方程都有哪些扩展阅读
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
例——解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
9. 数学中配方法是指什么
配方法是解一元二次方程的一种方法。配方法就是将一元二次方程由一般式ax²+bx+c=0化成(x+m)²=n,然后利用直接开平方法计算一元二次方程的解的过程;其过程可总结为五步:一消,二配,三移,四开,五计算结果。配方法过程较,一般解一元二次方程时不建议使用此方法,但是解应用题或者一元二次图像的时候又很重要。在公式法中用到的求根公式也可由此方法得到。
10. 初中数学配方法
配方法是解一元二次方程的一种解法,也即是把一个一元二次方程配成完全平方的形式,再开方即可。对于一个二次项是1的方程,配方的时候先把常数项移到方程右边,然后方程两边加上一次项系数一半的平方,最后把左边写成完全平方,正确解出方程就可以了,如果二次项系数不是1,先把二次项系数化成1,然后和二次项是1的配方是一样的,认真做题就可以了。