导航:首页 > 数字科学 > 数学概念由什么构成一个是数

数学概念由什么构成一个是数

发布时间:2022-08-04 02:39:03

Ⅰ 什么是数学概念

众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手.

概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来.

因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法.

一、从概念的产生背景着手,层层深入

对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它.

教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍?

这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题?

紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 .

在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解.

二、从概念的生活背景出发,创设学习情境

很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸.

等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中.

为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念:

阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当他追到1里处时,乌龟前进了里,当他追到了里,乌龟前进了里;当他追到了里,乌龟又前进了里……

(1)分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;

(2)阿基里斯能否追上乌龟?

让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,积极性和主动性高涨,课堂气氛也十分活跃.

三、从概念的历史背景出发,激发兴趣

复数和虚数的概念有悠远的历史背景,是数发展到一定的阶段的必然产物.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,在学生的有限的知识结构中也找不到虚数的生活原型,所以学生很难完全理解它.因此,在讲解这两个概念时,可以将数的发展史、虚数与复数的出现历程作简单阐述,为了表述得清晰而有趣,教师可以把这过程制作成动画短片:

从原始人分配食物开始,首先是自然数的出现,然后到分数的出现.接下来经过漫长的数的发展,人们又发现了很多不能用两整数之比写出来的数,如圆周率等.人们把它们写成π等形式,称它们为无理数.到19世纪,由于运算时经常需要开平方,如果被开方数是负数,比如,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.这样,可以让学生融入教学中,跟着故事的结尾一起思索,然后引入新概念:数学家们就规定用符号"i "表示"-1"的平方根,即=-1,虚数就这样诞生了.实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.种引入概念的过程新颖别致,一开始就能抓住学生的眼球,吸引他们的注意力,使课堂教学轻松有趣.

四、从概念的专业背景出发,讲求实用

许多数学概念在其他的专业领域应用也非常广泛.把数学知识和其他专业知识有机结合在一起,可以让学生充分认识到数学学习的重要性.

三角函数这一概念在很多专业领域都有重要的应用.在物理方面,简单的和谐运动,星体的环绕运动,峰谷电;在心理生理方面,情绪周期性波动、智力体力的周期性变化、一天内的血压状况;天文地理方面,气温变化规律,月缺月圆、潮涨潮汐的规律;日常生活中,车轮的变化,这一切的研究都离不开三角函数.

因此三角函数的应用课里,可以设计一些有周期性变化规律的实际问题,让学生建立简单的三角函数模型,培养学生数学建模,分析问题、数形结合、抽象概括等能力,体验数学在解决实际问题中的价值和作用,培养学生勤于思考、勇于探索的精神.

学生对新概念的学习只有在已有知识的基础上才能构建,所以教师在教学时一定要注意教材所设计的知识结构.要做到既不脱离课本,又不拘泥于课本,要有大胆的创新精神.要根据学生实际情况,设计好每一堂概念课.

Ⅱ 数学是由两个概念所构成,一个是数,一个是

构成数学的两个概念一个是代数,一个是几何.
回答完毕~

Ⅲ 什么叫做数学概念

数学概念(mathematical concepts)是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

Ⅳ 数学概念

一、数学概念的意义

1.概念的意义

逻辑学认为,概念是反映事物(思维对象)及其特有属性(本质属性)的思维形式。人们对客观事物的认识一般是通过感觉、知觉、思维形成观念(印象或表象),这是感性认识阶段,在感性认识的基础上,通过对客观事物的分析、综合、比较、抽象、概括、归纳与演绎等一系列思维活动,从而认识事物的本质属性形成概念,这是认识的理性阶段。理性认识在实践基础上不断深化,形成的概念又会进一步发展。

2.数学概念的意义

数学概念是一类特殊的概念,是其所反映的事物在现实世界中的空间形式和数量关系及其本质属性在思维中的反映。如平行四边形的概念在人的思维中反映出:这样的对象是四边形形状的而且两组对边是分别平行的。这就是四边形的本质属性。

数学概念在数学思维中起着十分重要的作用,它是最基本的思维形式。判断是由概念构成的,推理和证明又是由判断构成的,可以说,数学概念是数学的细胞。

概念是反映客观事物的思想,是客观事物在人们头脑中的抽象概括,是看不见摸不着的。要通过语词表达出来,才便于人们研究、交流,数学概念也不例外。如平行四边形概念用语词表达就是:“两组对边分别平行的四边形叫做平行四边形”。

数学概念的语词表达的一般形式是“(概念的本质属性)……叫做……(概念的名词)”。

二、数学概念的内涵和外延及它们之间的反变关系

1.数学概念的内涵和外延

客观世界的事物千差万别,反映在人的思维中也就千差万别,所形成的概念也千差万别,语词表达出来也是如此。但它们都有一个共同特点,都是用来认识和区别事物的。我们把一个概念所反映的所有对象的共同本质属性的总和,叫做这个概念的内涵。如平行四边形的内涵就是平行四边形所代表的所有对象的共同本质属性的总和:有四条边,两组对边分别平行……我们把适合概念的所有对象的范围,叫做概念的外延。如有理数和无理数,就是实数这个概念的外延。同样,实数和虚数,也是复数这个概念的外延。内涵和外延是概念的两个方面,正确的思维要求概念明确,明确概念即是要明确概念的内涵和外延。

对数学概念显然也有上述定义的结论。这对理解数学概念,指导数学概念的教学有十分重要的意义。

2.概念的内涵与外延的反变关系

要对概念加深认识,还要注意逻辑学中称之为概念的内涵与外延的反变关系,即:概念的内涵扩大时,其所得的新概念的外延缩小;当概念的内涵缩小时,其所得的新概念的外延扩大。反之,也成立。例如,在“矩形”概念的内涵中增加“一组邻边相等”的属性时,就得到外延缩小了的“正方形”的概念;在“矩形”的概念中去掉“有一个角是直角”的属性,就得到外延扩大了的“平行四边形”的概念。

利用概念的内涵与外延的反变关系,通过采取扩大概念的内涵同时缩小概念的外延的方法来研究概念间的关系和性质,这种方法在逻辑学中称之为“概念的限制”;通过缩小概念内涵的同时扩大概念外延的方法来认识同类概念的共同性质,这种方法在逻辑学上称之为“概念的概括”。在中学数学的概念教学中,经常使用概念的限制和概括的方法给新概念下定义和复习同类概念的共同性质。

三、概念间的关系

Ⅳ 数学中数的概念

数学定义整数(Integer):像-2,-1,0,1,2这样的数称为整数。整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为正整数,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。
一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+). [编辑本段]数学分类 正整数
是从古代以来人类计数(counting)的工具.可以说,从“一头牛,两头牛”或是“五个人,六个人”抽象化成正整数的过程是相当自然的.事实上,我们有时候把正整数叫做自然数(the natural numbers). 零
不仅表示“无”,更是表示空位的符号.中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件.印度-阿拉伯命数法中的零(zero)来自印度的(sunya)字,其原意也是“空”或“空白”. 负整数
中国最早引进了负数.《九章算术.方程》中论述的“正负数”,就是整数的加减法.减法的需要也促进了负整数的引入.减法运算可看作求解方程a+x=b,如果a,b是自然数,则所给方程未必有自然数解.为了使它恒有解,就有必要把自然数系扩大为整数系。 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。 奇数 :整数中,能被2整除的数是偶数,不能被2整除的数是奇数。 实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。

Ⅵ 什么是数学,数学的概念

数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>

Ⅶ 数学由什么构成的

是由数字,和算术构成
加上一些理论知识,以及身边的一切(万物离不开数学)

Ⅷ 数学究竟是由什么组成的

数学是由概念与命题等内容组成的知识体系,它是一门以抽象思维为主的学科,而概念又是这种思维的语言。 因此概念教学是中学数学中至关重要的一项内容,是基础知识和基本技能教学的核心,正确理解概念是学好数学的基础,特别是核心概念,学好核心概念是学好数学最重要的一环。从加德纳新颖的智能观和智能多元论出发,通过对何为“真正理解核心概念”、理解后的行为表现、学校教育要求学生理解核心概念什么、实现理解的途径等进行系统的阐述,形成了较为完善核心概念的教学观。本文将介绍多元智能理论对数学核心概念教学启示与实践的价值。
大体分成两类:数与形,
数与形还有更细的分类。

Ⅸ 数学是由什么组成

既然你问得这么不负责!偶也第一次很不负责地告诉你!下面是复制的!

名称来源
数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。
[编辑本段]数学的本质
数学的本质是什么?为什么数学可以运用在所有的其它科目上? 数学是研究事物数量和形状规律的科目。 如果要深入的研究其本质及其扩展问题,就必须引入【全集然文明】专有名词了。 其实数学的本质是:一门研究【储空】的科目。 自然万物都有其存储的空间,这种现象称之为【储空】。 要判断一个事物是否为“储空”其实很简单:只要能够套入“在××里”的××就是“储空”(包括具体和抽象)。于是大家将会发现,所有的事物都可以套入其中,也就是说:自然万物都只是不同的“储空”而已。 于是人们也发现:【代数】就是研究【储空量】的科目;【几何】就是研究【储空形状】的科目。而既然自然万物都只是不同的储空而已,那么数学当然也就可以通用于所有的科目之中了!
1.更多的证据
因为一个除真空外的储空都是有【储隔】(储空隔膜)的,于是人们在其它科目中使用数字就必须用【单位】来区分各种不同的储空,如:个、头、条、小时、牛、焦耳、欧姆、安培等等,可以说离开了单位,数字几乎毫无意义。 并且各种名词的【定义】也是相关储空的储隔,就是区别于其他事物的地方。
2.新数学等式和计算模型
异储空计算模型异储空等式【异储空等式】比如:1个人 异等于 5个苹果 ,就是说:一个人可以得到5个苹果,或一个人和5个苹果相联系(任何联系都可以);异等号就是等号=下面加个o(储空标志);这样就可以简单的描述很多日常生活中碰到的计算。而且您还可以通过右图的【异储空计算模型】(最简单的模型),来计算一些事物。
3.其他几何领域
当然有,其实一直都有两个巨大的几何领域被人们长期的忽视,那就是【文字几何】与【功能几何】。 (1)文字几何:当一些有特定含义的文字按照特殊的组合和形状排列下来就会出现各种特殊的功能和特性。就像我们最常见的“化学元素周期表”、“文字图表”、“数学计算模型”等等。 (2)功能几何:各种形状都是拥有各种不同的功能的!如球形可以做大容量的容纳物质,交叉有利于物质传播等等。所以我们应该仔细研究和探讨各种形状的各种特殊功能! 使用全集然文明逻辑:如果自然万物有共同的本质和规律,那么它们必然可以用来推导各个科目的本质和规律,并推理出该科目内的新内容。于是我们发现了数学就是研究“储空”的一个科目,并推理出了各种新领域。 注:等式、四则运算、解方程式的本质都可以用【储空】内部规律推理出来
[编辑本段]数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”
[编辑本段]数学的分类
离散数学 模糊数学
数学的五大分支
1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学
数学分支
1.算术 2.初等代数 3.高等代数 4. 数论 5.欧式几何 6.非欧式几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学
广义的数学分类
从纵向划分: 1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4.现代数学:是指20世纪的数学。1900年德国着名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个着名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 注:希尔伯特的23个问题—— 在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的着名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2.应用数学(Applied mathematics)。简单地说,也即数学的应用。 3 .计算数学(Computstion mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。 5.运筹学与控制论(Op-erations research and csntrol)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。
[编辑本段]符号、语言与严谨
在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部份数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含着大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。

Ⅹ “数”的概念是什么

说实话,写不下。而且我负责任地告诉你,如果没有学完高等数学,代数又没有一定功底的话,写出来你也难以全看懂。
但我可以告诉你这些概念在什么书上可以找到。
自然数的概念是Peano公理体系下定义的,在初等数论的教材,或者一些抽象代数教材,或者一些集合论的教材中可以找到。
整数是自然数中定义减法并使运算封闭得到的。常用的方法是定义为用两个自然数的的笛卡尔积关于“差相等”这一等价关系的商集。即Z=(N×N)/~,其中~就是这个等价关系。
有理数是在整数下定义除法并使运算封闭得到的。常用的是定义为用整数和正整数(或非零整数)集的笛卡尔积关于“约分后相等”这一等价关系得到的商集。
上述整数和自然数的定义可在部分抽象代数教材中找到。
实数是把有理数Cauchy完备化得到的,常用的方法有用Dedekind分划和Cantor基本列两种方法。实数的定义在一些讨论数学分析的书中会讲(但一般数学分析的教材往往略去),如Rudin的《数学分析原理》之类。
上面从自然数到实数的“数系扩张”过程,在汪芳庭的《数学基础》中都有十分完整而严谨的介绍。
在实数中,正数就是大于0的数,负数就是小于0的数。当然在这之前先要在实数系中定义大小关系。也可见于《数学基础》这本书,当然其他的书也可以。
关于小数,准确地说是实数的“十进小数表示法”,它不是什么新的数,只是一种实数的表示方法、记录方法而已。关于小数的详细讨论一般见于数值分析的教材,部分数学分析教材也有定义。

阅读全文

与数学概念由什么构成一个是数相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069