A. 四年级数学721约等于多少
根据需要,
按四舍五入到十位就是720,到百位就是700;
按去尾法到十位就是720,到百位就是700;
按进一法到十位就是730,到百位就是800。
B. 小学数学747约等于多少
保留到十位,747约等于750
保留到百位,747约等于700
C. 小学数学约等于怎么算
得数四舍五入
比如:小学数学35约等于40
四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这大概也是我们使用这种方法为基本保留法的原因吧
D. 小学数学中的大约等于多少是怎么定义的
大约等于多少一般是指接近某个整十,整百数。
近似数的混合运算,可按运算顺序和近似数的计算法则分步计算,但中间运算的结果要比最后结果多取一位数字。
例: 计算3.054×2.5-57.85÷9.21。
3.054×2.5-57.85÷9.21
≈3.05×2.5-57.85÷9.21
≈7.63-6.28≈1.4
根据已知数据,最后运算的结果要取两位数字,因此,中间运算的结果要取三位数字。
(4)数学1742约是多少扩展阅读
一、有效数字注意:
①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106。
③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。
二、有效数字的舍入规则:
1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
如将下组数据保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
E. 数学问题
“近二十年证明没有本质进展”
“近20年来,哥德巴赫猜想的证明没有本质进展。”北京师范大学数学系教授、将在本届国际数学家大会上作45分钟报告的陈木法说,“它的证明就差最后一步。如果研究取得本质进展,那猜想也就最终获得了解决。”
据陈木法介绍,在2000年,国际上曾有机构列出了数学领域的7个千年难题,悬赏百万美元求解,但并未将哥德巴赫猜想包括在内。
“在最近几年甚至十几年内,哥德巴赫猜想还难以获得证明。”中科院数学与系统科学研究院研究员巩馥洲这样分析,现在猜想已成为一个孤立的问题,同其他数学学科的联系不太密切。同时,研究者也缺少有效的思想、方法来最终解决这一着名猜想。“陈景润先生生前已将现有的方法用到了极至。”
剑桥大学教授、菲尔茨奖得主贝克尔也表示,陈景润在这项工作上取得的进展是迄今为止最好的求证结果,目前还没有更大的突破。
“在解决这类数学难题时,可能一二百年内都难有进展,也可能短期内就有重大进展。”在巩馥洲看来,数学研究中存在一定的偶然性,也许可以让人们提前在猜想证明上获得进展。
猜想求证呼唤全新思路
为求解“核心数学中具有挑战性的问题”,中科院数学与系统科学研究院成立了专门的国际研究团队。研究院负责人、研究员李福安介绍说:“我们期望在黎曼猜想等领域取得突破。这一研究团队并没有将哥德巴赫猜想作为努力的方向。”
陈景润,这位距“皇冠上的明珠”最近的数学家在1996年离我们而去。他的成就曾一度唤起人们“冲击”哥德巴赫猜想的“激情”。2000年3月,英国和美国两家出版公司曾悬赏百万美元,征求哥德巴赫猜想的最终解决方案,再次使之成为社会关注的热点。两年过去了,直到最后的截止日期,也没有人前来领取这笔奖金。
据估计,全世界约有二三十人有能力从事猜想的求证。对于这一着名猜想的最终解决,潘承洞曾撰文指出:现在看不出沿着人们所设想的途径有可能去解决这一猜想。我们必须对有关方法作出重大改进,或提出新的方法,才可能对猜想取得进一步的研究成果。王元的判断与此基本相似:“对哥德巴赫猜想的进一步研究,必须有一个全新的思路。”作为我国当代着名的数学家,王元和潘承洞都在猜想证明过程中做出过重大贡献。
“数学研究不只是做难题,我不赞成片面炒作这些难题。在我看来,研究这些数学难题的人不到世界数学家的1%。”陈木法觉得,“数学研究不必非得去解答别人提出的问题,我们要多做些原创性的研究,注重整体研究力量的提高。”
“民间数学家” 距离“明珠”有多远?
国际数学家大会开幕前夕,一些“民间数学家”纷纷来到北京,声称自己“已完全证明”了哥德巴赫猜想,引起社会的关注。
实际上,近年来我国不断有人拿着猜想的“最终证明结果”轮流拜访多位数学家,也不时传出“农民成功证明哥德巴赫猜想”、“拖拉机手摘得‘皇冠上的明珠’”等“爆炸性新闻”。
“随着大会的临近,数学研究院收到的关于猜想研究成果的稿件也越来越多。”中科院研究员李福安说,“20多年有成千上万的业余爱好者,我就收到了200多封信。他们的选题主要集中在哥德巴赫猜想上。由于猜想表述非常简洁,大多数的人都能懂,所以很多人都想来破解这个难题。”
“民间人士热爱科学的热情应该保护,但我们不提倡民间人士去攻世界数学难题。他们可以用这种热情去做更合适的事情。”李福安说,“从来稿中可以看出,不少作者既缺乏基本的数学素养,又不去阅读别人的数学论文,结果都是错的。”
“国外也有这种现象。比如在柏林国际数学家大会期间,就有人在会场张贴论文,宣称自己证明了(1+1)。”首届国家最高科学技术奖获得者、本届国际数学家大会主席吴文俊说:“一些业余爱好者会一点儿数学,有一点儿算术基础,就去求证(1+1),并把所谓的证明论文寄给我。其实像哥德巴赫猜想这样的难题,应该让‘专门家’去搞,不应该成为一场‘群众运动’。”
为此,许多数学家对数学爱好者提出忠告:“如果真想在哥德巴赫猜想证明上做出成绩,最好先系统掌握相应的数学知识,以免走不必要的弯路。”
新闻背景:摘取“皇冠上的明珠” 还差最后一步
新华网北京8月20日电(记者 李斌 张景勇邹声文) 徐迟那篇着名的报告文学,使数亿普通百姓知道了“自然科学的皇后是数学;数学的皇冠是数论;哥德巴赫猜想,则是皇冠上的明珠”,也知道了陈景润是全世界离那颗明珠最近的人——只差最后一步。但20多年过去了,这一步还是没有人能够跨过去。
哥德巴赫猜想已让人类猜了整整260个年头。1742年,德国数学家哥德巴赫写信给大数学家欧拉,提出每个不小于6的偶数都是二个素数之和(简称“1+1”)。例如,6=3+3,24=11+13,等等。欧拉回信表示,相信猜想是正确的,但他无法加以证明。
从那时起的近170年,许多数学家费尽心血,想攻克它,但都没有取得突破。直到1920年,挪威数学家布朗终于向它靠近了一步,用数论中古老的筛法证明了:每个大偶数是九个素因子之积加九个素因子之积,即(9+9)。
此后,对猜想的“包围圈”不断缩小。1924年,德国数学家拉德马哈尔证明了(7+7)。1932年,英国数学家爱斯斯尔曼证明了(6+6)。1938年,苏联数学家布赫斯塔勃证明了(5+5),2年后又证明了(4+4)。1956年,苏联数学家维诺格拉多夫证明了(3+3)。1958年,我国数学家王元又证明了(2+3)。1962年中国数学家潘承洞证明了(1+5),王元证明了(1+4);1965年,布赫斯塔勃等又证明了(1+3)。“包围圈”越来越小,越来越接近终极目标(1+1)。
1966年,中国数学家陈景润成为世界上距这颗明珠最近的人——他证明了(1+2)。他的成果处于世界领先地位,被国际数学界称为“陈氏定理”。由于在哥德巴赫猜想研究方面的卓越成就,1982年,陈景润与王元、潘承洞共同荣获国家自然科学奖一等奖。
从陈景润证明(1+2)以来,哥德巴赫猜想的最后一步——证明(1+1)没有本质进展。有关专家认为,原有的方法已被用到极至,必须提出全新的方法,采用全新的思路,才可能对猜想取得进一步的研究成果。(完)
附:
【哥德巴赫猜想简介】
当年徐迟的一篇报告文学,中国人知道了陈景润和哥德巴赫猜想。
那么,什么是哥德巴赫猜想呢?
哥德巴赫猜想大致可以分为两个猜想:
■1.每个不小于6的偶数都是两个奇素数之和;
■2.每个不小于9的奇数都是三个奇素数之和。
■哥德巴赫相关
哥德巴赫是德国一位中学教师,也是一位着名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
【哥德巴赫猜想小史】
1742 年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
■哥德巴赫猜想证明进度相关
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的40多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
■布朗筛法相关
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1 与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。
由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明哥德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对哥德巴赫猜想证明没有一点作用。
哥德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。哥德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。
【哥德巴赫猜想意义】
“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)
关于哥德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对哥德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对哥德巴赫猜想研究兴趣很大。
事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。哥德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而哥德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决哥德巴赫猜想。
例如:一个很有意义的问题是:素数的公式。若这个问题解决,关于素数的问题应该说就不是什么问题了。
为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢?
一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而哥德巴赫猜想对于小学生来说都能读懂。
数学界普遍认为,这两个问题的难度不相上下。
民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决哥德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了哥德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。
当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题。牛顿用非凡的微积分技巧解出了最速降线方程,约翰·柏努力用光学的办法巧妙的也解出最速降线方程,雅克布·柏努力用比较麻烦的办法解决了这个问题。虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法——变分法。现在来看,雅克布的方法是最有意义和价值的。
同样,当年希尔伯特曾经宣称自己解决了费尔马大定理,但却不公布自己的方法。别人问他为什么,他回答说:“这是一只下金蛋的鸡,我为什么要杀掉它?”的确,在解决费尔马大定理的历程中,很多有用的数学工具得到了进一步发展,如椭圆曲线、模形式等。
所以,现代数学界在努力的研究新的工具,新的方法,期待着哥德巴赫猜想这个“下金蛋的鸡”能够催生出更多的理论。
【哥德巴赫猜想证明的错误例子】
“哥德巴赫猜想”公式及“哥猜”证明 “哥德巴赫猜想”的证明:设偶数为M,素数删除因子为√M≈N,那么,偶数的奇素数删除因子为:3,5,7,11…N, 1、偶数(1+1)最低素数对的正解公式为:√M/4,即N/4。 2、如果偶数能够被奇素数删除因子L整除。偶数的素数对为最低素数对*(L-1)/(L-2),比如说偶数能够被素数3整除,该偶数的素数对≥(3-1) /(3-2)*N/4=N/2,又如偶数能够被素数5整除,素数对≥(5-1)/(5-2)*N/4=N/3,如果偶数既能被素数3整除,又能被素数5整除,那么,该偶数的素数对≥2N/3。对于偶数能够被其它奇素数删除因子整除,照猫画虎。 ∵当偶数为大于6小于14时,都知道有“哥德巴赫猜想”(1+1)的解。又根据上面的“哥猜”正解公式,大于16的偶数(1+1)的素数对都≥1,∴“哥德巴赫猜想”成立
猜想:歌德巴赫猜想一:任意一个>=6的偶数都可以表示为两个素数相加.
经我猜想得: 任意奇质数末尾数必为1,3,5,7,9 (其中1 ,9 至少为两位数,如11,19)
这样就有:1+1,1+3,1+5,1+7,1+9,
3+3,3+1,3+5,3+7,3+9,
5+5,5+1,5+3,5+7,5+9,
7+7,7+1,7+3,7+5,7+9,
9+9,9+1,9+3,9+5,9+7,
(其中都可以为多位数的素数相加)
所得的和末尾必为0,2,4,6,8,(都需>=6的偶数)
这样所的的和必定为>=6的偶数,
但这不一定可以填充所有的偶数,所以这方法是错误的`!条件不充分的!
希望对你能有所帮助。
F. 世界上最难的数学题
哥德巴赫猜想(Goldbach Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n �0�6 6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个n �0�6 9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,
16 = 5 + 11, 18 = 5 + 13, . . . . 等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen‘s Theorem) �0�6 “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。 圆周率圆周率简介 圆周率是指平面上圆的周长与直径之比。用希腊字母 π (读“Pài”)表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14) 圆周率的历史 古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的着作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。至今,最新纪录是小数点后12411亿位。 除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π^2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了e^π 是超越数等等。
圆周率的计算古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。 十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。 进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。 历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。 把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否是循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。 现在的人计算圆周率, 多数是为了验证计算机的计算能力的,还有,就是为了兴趣。 圆周率的运算方法古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。 1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。 2、拉马努金公式 1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。 1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是: 3、AGM(Arithmetic-Geometric Mean)算法 高斯-勒让德公式: </B>这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。 4、波尔文四次迭代式: </B>这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。 5、ley-borwein-plouffe算法 </B>这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。 6、丘德诺夫斯基公式: 这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本: 丘德诺夫斯基公式7.韦达的公式 1593年,是π的最早分析表达式。2/π=√2/2×√(2+√2)/2×√〔2+√(2+√2)〕×~~~ 表示π的级数较着名的表示π的级数有莱布尼茨级数 π/4=1-1/3+1/5-1/7+1/9…… 以及威廉姆斯无穷乘积式 π/2=2*2/3*4/3*4/5*6/5*6/7*8/7*8/9…… 我们就莱布尼茨级数加以证明: 先给出等比级数 1+q+q^2+q^3+q^4+……+q^(n-1)=(1-q^n)/(1-q) 移项得到 1/q=1+q+q^2+ ……+q^(n-1)+q^n/(1-q) 令q=-x^2,得到 1/(1+x^2)=1-x^2+x^4-x^6+……+(-1)^(n-1)*x^(2n-2)+(-1)^n*x^2n/(1+x^2) 将左右两端做出从0到1的积分,则左端为 ∫下限0 上限1 dx/(1+x^2)=arctan1-arctan0=π/4 右端为1-1/3+1/5-1/7+1/9……+(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 现在将证明右端末项(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 当n趋于正无穷大时趋于0 关于积分,有不等式:若f(x)≤g(x),则∫下限a 上限b f(x)dx≤∫下限a 上限b g(x)dx 对于x∈[0,1],有x^2n/(1+x^2)≤x^2n 故∫下限a 上限b x^2n/(1+x^2)dx≤∫下限a 上限b x^2ndx 不等式右端结果是1/(2n+1),显然n→+∞时1/(2n+1)→0,所以∫下限a 上限b x^2n/(1+x^2)dx也趋于0。 于是n增大时,1-1/3+1/5-1/7+1/9……趋于π/4,公式得证。 圆周率的计算历史时间纪录创造者小数点后位数 所用方法 前2000 古埃及人 0 前1200中国 0 前500 《旧约全书》0(周三径一) 前250阿基米德3 263 刘徽5 古典割圆术 480 祖冲之 7 1429 Al-Kashi 14 1593 Romanus 15 1596 鲁道夫 20 古典割圆术 1609 鲁道夫 35 1699 夏普 71 夏普无穷级数 1706 马青(梅钦) 100 马青公式 1719 (法)德·拉尼 127(112位正确)夏普无穷级数 1794(奥地利)乔治·威加 140 欧拉公式 1824 (英)威廉·卢瑟福 208(152位正确)勒让德公式 1844 Strassnitzky & Dase 200 1847 Clausen 248 1853 Lehmann 261 1853 Rutherford 440 1874 威廉·山克斯 707(527位正确) 20世纪后 年 月 纪录创造者 所用机器 小数点后位数 1946 (英)弗格森 620 1947 1 (英)弗格森 710 1947 9 Ferguson & Wrench 808 1949 Smith & Wrench 1,120 1949 Reitwiesner et alENIAC 2,037 1954 Nicholson & JeenelNORC3,092 1957 Felton Pegasus 7,480 1958 1 Genuys IBM704 10,000 1958 5 Felton Pegasus 10,021 1959 Guilloud IBM 704 16,167 1961 Shanks & Wrench IBM 7090 100,265 1966 Guilloud & Filliatre IBM 7030 250,000 1967 Guilloud & Dichampt CDC 6600 500,000 1973 Guilloud & Bouyer CDC 7600 1,001,250 1981 Miyoshi & Kanada FACOM M-200 2,000,036 1982 Guilloud 2,000,050 1982 Tamura MELCOM 900II 2,097,144 1982 Tamura & Kanada HITACHI M-280H 4,194,288 1982 Tamura & Kanada HITACHI M-280H 8,388,576 1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206 1985 10 Gosper Symbolics 3670 17,526,200 1986 1 Bailey CRAY-2 29,360,111 1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414 1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839 1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700 1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551 1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000 1989 6 Chudnovskys IBM 3090 525,229,270 1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898 1989 8 Chudnovskys IBM 3090 1,011,196,691 1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799 1991 8 Chudnovskys 2,260,000,000 1994 5 Chudnovskys 4,044,000,000 1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286 1995 10 Takahashi & Kanada 6,442,450,938 1997 7 Takahashi & Kanada 51,539,600,000 1999 4 Takahashi & Kanada 68,719,470,000 1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000 2002 Takahashi Team 1,241,100,000,000圆周率的最新计算纪录1、新世界纪录 圆周率的最新计算纪录由日本人金田康正的队伍所创造。他们于2002年算出π值1,241,100,000,000 位小数,这一结果打破了他们于1999年9月18日创造的206,000,000,000位小数的世界纪录。至今,最新纪录是——法国一工程师将圆周率算到小数点后2,700,000,000,000 2、个人计算圆周率的世界纪录 在一个现场解说验证活动中,一名59岁日本老人Akira Haraguchi将圆周率π算到了小数点后的83431位,这名孜孜不倦的59岁老人向观众讲解了长达13个小时,最终获得认同。这一纪录已经被收入了Guinness(吉尼斯)世界大全中。据报道,此前的纪录是由一名日本学生于1995年计算出的,当时的精度是小数点后的42000位。 3、背诵圆周率记录 2006年,吕超将圆周率背诵到小数点后67890位,第67891位将0背为5发生错误,挑战结束,背诵过程长达24时04分。 一些有趣的数字序列在π小数点后出现的位置数字序列出现的位置 01234567891:26,852,899,245 及 41,952,536,161 99,972,955,571 及 102,081,851,717 171,257,652,369 01234567890:53,217,681,704 及 148,425,641,592 432109876543:149,589,314,822 543210987654:197,954,994,289 98765432109:123,040,860,473 及 133,601,569,485 及 150,339,161,883 183,859,550,237 09876543210:42,321,758,803 及 57,402,068,394 83,358,197,954 10987654321:89,634,825,550 及 137,803,268,208 152,752,201,245 27182818284:45,111,908,393
G. 小学数学中的大约等于多少是怎么定义的
大约等于多少一般是指接近某个整十,整百数。
比如298+195≈300+200=500,就是把298看成300,195看成200。
还有一种约等于,就是看要求精确的后一位数,四舍五入法。
如:2350≈2400【精确到百位】
0.235≈0.24【精确到百分位】
(7)数学1742约是多少扩展阅读:
四舍五入与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这也是我们使用这种方法为基本保留法的原因。
在求商时的用法,除了取近似商(近似)用约等号以列、其余情况一般都用等号。如:
10÷3=3……1 (有余数除法的表示法)
10÷3=3.333(除不尽的表示法)
10÷3=3.3 (商取循环小数的表示法)
3 1/3=3.3 (化分数为循环小数的表示法)
10÷3≈3.3 (取近似商的表示法)
H. 小学三年级数学约等于怎么算
得数四舍五入,比如:小学数学35约等于40。
四舍五入是一种精确度的计数保留法,与其他方法本质相同.但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的.这大概也是我们使用这种方法为基本保留法的原因。
“四舍五入”方法:
比保留的位数多看一位,该位上的数字是“5”或者比“5”大,向前进一,该位上的数字是“4”或者比“4”小,就舍去。
例如:6.56,保留一位小数,就是6.6。而6.54,保留一位小数,就是6.5。
在取小数 近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉。如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进"1",这种取近似数的方法叫做四舍五入法。
《 九章算术》里也采用“四舍五入”的方法,在用比例法求各县应出的车辆时,因为车辆是整数,他们就采用四舍五入的方法对演算结果加以处理。
I. 小学数学中的大约等于多少是怎么定义的
大约等于多少一般是指接近某个整十,整百.数.
比如298+195≈300+200=500
就是把298看成300
还有一种约等于,就是看要求精确的后一位数,四舍五入法.
如:2350≈2400【精确到百位】
0.235≈0.24【精确到百分位】
J. 约等于多少怎么算
得数四舍五入,比如:小学数学35约等于40。
四舍五入是一种精确度的计数保留法,与其他方法本质相同.但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的.这大概也是我们使用这种方法为基本保留法的原因。
(10)数学1742约是多少扩展阅读:
大约等于,是一个估计的数字,是通过四舍五入计算出来的。
通常,他们会告诉你确切的数字,例如,十位,491年大约是490年,根据舍入算法,如果个位上的数小于4,362年大约是360年,如果个位的数字大于5,287年大约是290年。