导航:首页 > 数字科学 > 数学数字阵列是什么

数学数字阵列是什么

发布时间:2022-08-07 03:07:43

❶ 阵列 是什么意思

阵列释义:
排成行和列的数学元素的排列

❷ 矩阵是什么意思

在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。



矩阵分解:

将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

❸ 阵列计算方法如题 谢谢了

阵列【词语】:阵列 【注音】:zhèn liè 【释义】:1.亦作"陈列"。 2.作战的阵势﹑队列。前蜀韦庄有《旅次甬西见儿童以竹枪纸旗戏为阵列主人叟曰斯子也三世没于阵思所袭祖父雠余因感之》诗。 3.行伍。 4.队伍。 5.排列。 6.[array]排成行和列的数学元素的排列 所谓阵列就是指一个变数,它包括了连续数个变数(资料型态相同),宣告方式如下: 资料型别 变数名称 [ 阵列个数 ] ; 如果要一个叫array的含十个整数变数的阵列,就像这样 int array[10]; 阵列元素的存取方式如下: array[0]是第一个、array[1]是第二个、array[2]是第三个…依此类推(C语言中大部分的编号都从0开始) 在记忆体中是这个样子的: int array[4]; array[0] = 10; array[1] = 13; array[3] = 432; array[2] = 9999;

❹ matlab里的阵列是什么东西啊是不是矩阵

不能只看外形,因为MATLAB有矩阵,也有数组,二者外形一样,但运算截然不同。所以应该根据运算来看是矩阵还是数组。
二者的差别主要在乘、左除、右除、次幂上,矩阵运算符分别是*,\,/,^,数组运算符分别是:.*,.\,./,.^。左边都有个小圆点。
二者运算不同,矩阵运算是按数学上的矩阵算法。矩阵是一个整体。数组主要在元素间进行运算。例如:a=[1 2 3];a.^2=[1 4 9],而a^2却无法计算,因为矩阵乘法运算,要求前一矩阵的列数必须等于后一矩阵的行数,才能进行运算。

❺ 什么叫矩阵…

矩阵
矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组。

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

来说,我们可以构成两个矩阵:

a1b1c1a1b1c1d1

a2b2c2a2b2c2d2

a3b3c3a3b3c3d3

因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。

矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。

数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。

矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。

其实以我学习数学的经验呀
这些概念什么的
你真的不用了解这么清楚
大学里的数学
说实话
你只要知道考试时那题做的步骤
至于为什么做
不用那么斤斤计较
因为你要计较
你也不明白
。。。。

呵呵
我学的时候就是死记它的方法
考试考得也还不错

。。。。

希望对你有帮助

❻ 什么是矩阵

矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组。

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

来说,我们可以构成两个矩阵:

a1b1c1a1b1c1d1

a2b2c2a2b2c2d2

a3b3c3a3b3c3d3

因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。

矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。

但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状。随后移动处筹,就可以求出这个方程的解。在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年。

数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。

矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。

目录 [隐藏]
1 历史
2 定义和相关符号
2.1 一般环上构作的矩阵
2.2 分块矩阵
3 特殊矩阵类别
4 矩阵运算
5 线性变换,秩,转置
6 Jacobian 行列式
7 参见

[编辑]
历史
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德·威廉·莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔·克拉默其后又定下了克拉默法则。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。

1848年詹姆斯·约瑟夫·西尔维斯特首先创出matrix一词。研究过矩阵论的着名数学家有凯莱、威廉·卢云·哈密顿、格拉斯曼、弗罗贝尼乌斯和冯·诺伊曼。

[编辑]
定义和相关符号
以下是一个 4 × 3 矩阵:

某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。

在C语言中,亦以 A[i][j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的)

此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学着作中。

[编辑]
一般环上构作的矩阵
给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。

若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。

在维基网络内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。

[编辑]
分块矩阵
分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵

可分割成 4 个 2×2 的矩阵


此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。

[编辑]
特殊矩阵类别
对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。
埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。
特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。
随机矩阵所有列都是概率向量, 用于马尔可夫链。
[编辑]
矩阵运算
给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:

另类加法可见于矩阵加法.

若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如

这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.

若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如

此乘法有如下性质:

(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").
(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。
C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。

对其他特殊乘法,见矩阵乘法。

[编辑]
线性变换,秩,转置
矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:

以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。

矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。

m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:

(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

❼ photoshop 数字图像处理中阵列和矩阵有什么区别

photoshop 数字图像处理中阵列和矩阵的区别是:
1、阵列图就是我们常说的位图,又叫点阵图,它是由像素构成的图,放大图片会失真,位图是由像素阵列的排列来显示图片效果的;
2、矩阵图就是常说的矢量图,又叫向量图,矢量图是通过多个对象以矩阵的组合生成的,以函数来实现图片的所有信息,矢量图不象位图那样纪录画面上每一点的信息,而是纪录了元素形状及颜色的算法,无论显示画面是大还是小,画面上的对象对应的算法是不变的,即使对画面进行无限放大,图片也不会失真。

❽ 矩阵是什么是什么

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。

旋转矩阵是世界上着名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。

❾ 哪位高手知道矩阵到底有什么意义

意义:

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

(9)数学数字阵列是什么扩展阅读

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

在线性代数中,对于n阶方阵N,存在正整数k,使得N^k=0,这样的方阵N就叫做幂零矩阵。满足条件的最小的正整数k被称为N的度数或指数。

人类对数的认识有2个轨迹:第1个发展轨迹是对数本身的认识,在原始社会的狩猎中,用自然数1,2…,9来记录猎物,以后又认识了分数和小数。在研究圆的半径和周长的关系等一系列问题时,接触到了无理数,随后又发现了虚数。

第2个发展轨迹是,用字母代表数字进行各种数学运算,从具体的数字到代数,这是一个飞跃,有了代数,数学得到了飞速发展,如函数、微积分的出现。

❿ 方阵队列是什么意思

方形的队列。n×n阶矩阵被称为n阶方阵,即方阵就是行数与列数一样多的矩阵。在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

在队列的形成过程中,可以利用线性链表的原理,来生成一个队列。

基于链表的队列,要动态创建和删除节点,效率较低,但是可以动态增长。

队列采用的FIFO(first in first out),新元素(等待进入队列的元素)总是被插入到链表的尾部,而读取的时候总是从链表的头部开始读取。每次读取一个元素,释放一个元素。所谓的动态创建,动态释放。因而也不存在溢出等问题。由于链表由结构体间接而成,遍历也方便。

阅读全文

与数学数字阵列是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069