❶ 如何将数学中的数与形相结合
这个问题有点大, 我只能说个大概
说到数形结合, 最典型的就是解析几何, 代数方程对应几何图像
比如 直线 y=x, y=x^2, y=x^3等代数方程
在直角坐标系当中表示为曲线
以上是我的解释, 也只能解释到这里了, 欢迎进一步交流
❷ 怎样学好“数形结合”
简单的说,就是多总结,对每种题研究透彻,做到举一反三
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。
六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
❸ 谈谈在教学中怎样有效地数形结合,引导学生深入理解数学知识的本质
在教学中渗透数形结合思想, 有利于学生运用这种思想分析数学问题的意识 每名中学生在平常的生活当中都会拥有一些图形方面的知识, 例如温度计和它上面的温度刻度,刻度尺和它上面相应的刻度, 每天走过的上学和放学的路线也可以当做是一条直线, 教室中每名学生的座位等,积极利用学生的这些认识基础, 将学生生活中的数和形相结合的例子转移到教学中来,从而在课堂上渗透相应的数形结合思想, 并充分挖掘教材所提供的一些机会,有效把握渗透数形结合思想的契机 . 例如学习一元一次不等式解集和一次函数的图像,数和数轴, 二元一次方程组的解和一次函数图像之间的关系, 一对有序实数和平面直角坐标系等等知识的时候,都是进行数形结合思想渗透的良好时机 . 例题:小亮和母亲晚饭后出去散步,从家走了20 分钟之后到达了一个报亭,这个报亭距离他家有900米, 母亲马上按照原来的速度回家. 小亮看了10分钟的漫画以后,用15分钟回到家里. 你可以在线面的平面直角坐标系中表示出二者离家的时间和距离间的关系 3 吗? 初中数学教师必须积极将生活中的实际问题和探索规律相结合,对学生进行多次的数形结合思想渗透, 不断强化初中数学中的数形结合的思想, 进而使学生逐渐形成在学习数学的时候有效运用数形结合的意识. 而且, 教师必须教授学生在运用数形结合的时候要特别注意一些原则,例如到底是知形确数还是知数确形, 进行规律探索的时候要从特殊到一般,进而归纳并总结出一般性的结论 . (二)应用数形结合思想,可以使学生在解决问题的时候更加灵活,不断增强分析及解决问题能力 初中数学教师在渗透数形结合的思想的时候, 必须使学生充分明白要想利用数形结合解决问题,就必须找准二者的契合点, 然后根据相应对象的属性,将数与行进行巧妙的结合, 进而进行相互间的有效转化,这样才能真正有效的解决相应的数学问题. 数形结合的思想通常表现在一些利用图像呈现相应信息的数学应用性问题当中.
❹ 怎样在数学教学过程中贯彻数形结合教学原则
数形结合不仅是一种数学思想,也是一种很好的教学方法。着名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。在教学中,许多算理学生模棱两可,如能做到数形结合,学生便可透彻地加以理解。如在教学《异分母分数加减法》时,我们利用数形结合使学生体会“通分”的必要性,理解异分母分数加减法的算理,突破教学难点。
在例题讲解后的回顾过程教师问道:
(1)让我们一起回顾一下用通分的方法计算这三道题的过程,想一想,你发现了什么?
教师这时边播放课件边语言讲解。
通过以上数形结合的办法,既强化了异分母分数加法的算法,又深刻理解了这个算法的算理所在,数形结合相得益彰。
❺ 如何进行数形结合教学
数学概念作为小学数学教学中最为基本的知识,是小学数学知识结构的重要组成部分。学生只有掌握了数学概念,才可了解进而掌握数学知识。数形结合思想就是指在教学过程中,借助于直观形象的模型和集合图形来理解抽象的数学概念、规律及数量关系。小学生大多处在直观的认识阶段,很难理解抽象的概念。只有把抽象的数学概念与形象生动的图形结合起来,丰富小学生的感性认知途径,就可以帮助学生轻易理解数学概念的真正内容。本文结合笔者多年教学实践,谈谈数形结合思想在小学数学概念教学中的运用。
1、数形结合思想的内涵
“数”和“形”是数学教学过程中两个最为重要的部分,也是数学教学中经常研究的对象。在数学教学过程中,将“数”与“形”结合起来,借用直观形象的“形”来理解抽象难懂的“数”,运用细致的“数”来解释“形”的特征。将两者有机的组合在一起,相互配合。使得抽象难懂的概念与直观易懂的图形统一起来,从而轻松的解决数学问题。
2、数形结合思想在小学数学概念教学中的运用
2.1 建立模型,引入概念
考虑到小学生的理解能力有限,在引入数学概念时必须考虑到学生对于概念的理解和掌握。在引入概念时,需要先建立直观的模型,让学生了解其表象,进入深入了解概念的内涵。对于模型表象的建立,是学生通过对感知材料进行分析,以此为基础而产生的印象。在小学数学教学中引入概念时,图形演示是建立模型的最常用也是最有用的方法。小学生尚处在简单的用形象思维考虑问题的阶段,在对于抽象的数学概念理解时,需要借助于丰富而形象的感性材料。在数学概念教学过程中,需要充分展现抽象的概念与形象的图形之间的相似之处,用最具有表现力的图形将难懂概念的本质演示出来。通过数形结合,学生将对所学的数学概念轻松掌握,并记忆深刻。
在倍数的教学过程中,学生就很难理解倍数的概念。如何将倍数的概念最为简单明了的教授给学生,使他们能完全掌握呢?图形演示绝对是最为简单而有效的方法。教学时可将2个三角形看成一份,在下面在摆出4个正方形,分成两份。教授学生们观察三角形有1个2,正方形中有2个2,以2个为一份,就可以用数学语言表达:正方形的个数是三角形的2倍。在这简单的图形演示中,学生从最简单的“个数”“份数”,再引出“倍数”,过渡自然,不会显得很突兀和难以理解,从而轻松掌握“倍数”概念的本质。
在利用直观的图形建立模型以助理解时需注意分寸,不要为增强图形对学生的刺激效果,而在图形演示上下太多功夫,导致学生的注意力集中到图形上去,失去理解概念的兴致。图形演示只是手段,是为了让学生直观的感受概念的本质,更好的理解数学概念的本质,其本身需简洁明了。
2.2 步步递进,分析形成
学生对数学概念的认识形成都有一个过程,在教学时仅借助一个图形是不够的,需在图形的基础上提出逐步深入的问题,诱导学生进行更深层次的思考,让学生亲自经历从对概念的直观感知到深刻理解的过程。学生不仅要能理解概念,还要能运用。故在引入概念时,需对学生理解的图形表象进一步递进,分析概念的形成过程,增强问题的形象性,拓展问题的深度,以启发学生更深层次的思考。在教学中学生需回忆概念引入的过程,观察和分析抽象概念如何变得形象,从而形成对新概念的掌握。
在概念抽象且难以理解时,教师可在教学过程中借助于形象的物体设问,引导学生观察分析。例如在对于“体积”概念的教学时,教师可先引导学生观察橡皮与粉笔盒,问哪个物体更大,让学生初步感知“体积”的概念。然后可在烧杯内盛水,并放入小石块,让学生观察烧杯内水位的变化,并询问:水位为什么会上升?上升了多少?学生可以从水位上升中明白物体所占的空间体积大小就是“体积”。水位上升的多少就是小石块在水中占有的体积。通过深入讨论,学生就能轻易到“体积”就是物体所占有的空间体积大小。学生不仅因趣味实验而理解了“体积”的概念,还对次产生深刻的印象,也可以在以后更熟练的应用此概念。
在进行实物建立概念模型,设置情境时,教师需特别注意层层递进,注意概念与图形的有机结合。在教学过程中,还需要用问题去诱导学生,启发学生,让学生在观察中发现问题,进而分析并解决问题。教师需要在学生形成对概念的表象认识时,引导学生观察分析概念的本质属性,使得学生在整个概念学习过程中能步步递进,了解整个过程的形成情况,完成对概念的理解过程。
2.3 动手作图,理解本质
小学生难以运用生活经验将实际遇到的问题转移在数学问题上,从而形成对数学概念的理解。所以在平时教学过程中,教师需根据实际教学情况,引导学生利用工具动手作图,以帮助理解概念的本质。通过作图观察,学生可建立属于自己的概念表象,拓展学生的空间观念,提高空间思维能力。从而培养学生的抽象思考、分析概括等能力。
在三角形的教学中,学生就很难理
❻ 怎么解决数学上数形结合问题
所谓的数形结合,就是把几何和代数组成的题目.以初中的来说(本人初三生..),几何是在四边形,三角形,和圆这三种基本图形中出题的,现在比较热门的是相似三角形,也是考试点击率最高必考题之一!至于代数,就是函数.说穿了,函数就是方程,方程就是函数的灵魂,只有方程的基础打好了,函数才会好.题目做的多了,你会发现数形结合的题目到最后全部都是解方程解出来的,还有一个重要的知识点就是两点之间距离公式.想要做好数形结合题,几何的知识要掌握好,比如说平行四边形对边相等,平行;菱形对角线互相平分......然后根据这些几何知识找出方程,在平明直角坐标系中用函数,也就是列出方程算出最后的X.
❼ 如何在数学教学中渗透数形结合思想
内容提要:数形结合思想是一种重要的数学思想,它可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质,因此在高中数学教学中应有效渗透数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。
❽ 怎样运用数形结合的方式促进教学
教学|数形结合究竟如何运用
一、数形结合可使复杂问题简单化
华罗庚先生曾说,数缺形时少直观,形少数时难入微。形象说明了数形结合的重要性,指出数学问题应从数形相联系入手。数形结合就是把抽象的数学语言与直观的图形结合起来思考,使抽象思维与形象思维结合,通过“以形助教”或“以数解形”,可使得复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。义务教育《数学课程标准》将培养学生用数学解决问题的能力作为重要目标。这给教师在小学数学教学中解决如何从具体事物中抽象出数学问题,如何从感性思维上升到理性思维提出了具体要求。而数形结合思想正是实现该类问题教学的有效例证之一。
长期以来,在教学中数学知识是一条明线,得到数学教师的重视,数学思想方法是一条暗线,容易被教师所忽视。在小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,将非常有利于学生从不同侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。在教学三年级下册第8单元《连乘法解决问题》时发现部分学生,特别是年龄较小的学生理解数量关系还存在一定困难。为此,作者经过思考研究,数学课堂趣乐性与思辩性,运用数形结合思想,在生活图片和抽象数学问题中间设置过渡用数学几何图形(抽象图形),既减小学生思维跨度,便于数学问题的进一步理解,又使学生感受学习数学的乐趣。
二、数形结合思想的实践应用
片段一:
用连乘法解决问题是人教版义务教育实验课程三年级下册8单元内容,教材采用了学生排队做操的图案作为引导新知识的开始。
如图1,由于图中没有给出更多的数学信息,呈现的三个方阵不完整,所以当教师问学生们从图中可以发现哪些数学信息以及能提出什么数学问题时,学生的回答千奇百怪,并且对方阵的数量产生了歧义。为什么会出现这些现象呢?设想只花两三分钟的主题切入却花费了将近十分钟时间,并且同学们出现争论,在这里纠缠不清。
图4
三、数形结合对学生思维提升的表现
课堂结束,我的脑海里不断交互出现上课的情景。为什么同样是生活图片还是让孩子们理解数量关系出现困难?返回到班上问学生,方阵图片和点子图片谁更能让你理解这三种方法。学生都纷纷表示点子图好理解一些,缘由是点子图通过不同的摆放更能感受到数量之间的关系。诚然,根据三年级孩子的年龄特点和思维特点,生活图片到抽象数学问题的跨度太大,学生兴趣和思辨能力跨越该跨度存在不同程度困难。借助几何图形,以形助教,使抽象的问题直观化,有利于学生的思维的提升。
1.引入图形辅助教学,将数学学习融入生活
在数学教学中,无论是数与代数、图形与几何,还是统计与概率等知识处处蕴涵着数形结合的思想。教材借助几何图形的直观来帮助学生理解抽象的概念。生动形象的图形使得抽象的知识变得趣味化、直观化,让学生在学习时,不再感到枯燥乏味,反而能够使学生从中获得有趣的情感体验,让学生主动去探索,把握概念本质。
2.抽象图形辅助教学,使数学学习高于生活
本课中,学生借助点子图,数形结合,化解了数学信息之间的不易理解的困难,通过点子图的拼摆,让抽象的思维形象的呈现,隐藏的数量关系通过“形”的表象就显露出来,学生理解了三种方法之间区别和联系,加深了对每种方法思路的理解,体会数形结合思想在解决问题中的作用。用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。“数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
3.凝练图形辅助教学,形成问题解决教学模式
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”在教学中,根据不同教学内容充分利用数形结合思想,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
(1)“以形助数”在直观中理解数
在“数与代数”教学中借助图形的直观性将抽象的数学概念、运算等形象化、简单化,给学生以直观感,让学生以多种感官充分感知,在形成表象的基础上理解数学的本质,解决数学问题。
(2)“以数想形”帮助理解各种公式
在教学有关的数学公式时,如果只是让学生死记公式,这样只会将知识学死。借助图形充分理解公式的含义,使学生知其然,而知所以然。
(3)“数形结合”借助表象发展空间观念
儿童的认知规律,一般来说是从直接感知到表象,再到形成概念的过程,表象介于感知和形成概念之间,抓住这中间环节,促使学生多角度灵活思考,大胆想象,对知识的理解逐步深化,发展学生的空间观念,具有十分重要的意义。
总之,通过引入生活实例,利用数形结合,合理设置数形跨度,即可提高学生们学习数学的兴趣,也让学生在不断的训练中感悟数学思想,丰富学生的思维活动,以提高学生的数学学习能力,又可实现数学教学中的趣乐性与思辨性的实践探索。
❾ 在课堂教学中如何渗透数形结合思想
着名数学家华罗庚说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”这句话形象、简明、扼要地指出了数和形的相互依赖、相互制约的辩证关系。“数形结合”既是一种重要的数学思想,也是一种解决数学问题的有效方法。下面我就结合自己的教学实际谈谈小学数学课堂教学中应如何有效渗透数形结合的数学思想方法。
1 以形促思,在数的认识教学中,渗透数形结合思想方法,帮助学生很好地建立数感数感是一种主动、自觉或自动化的理解数和运用数的态度和意识,是对数学对象、材料直接迅速、正确敏感的感受能力。《数学课程标准》指出:“数感主要表现在理解数的意义;能用多种方法表示数。”例如教学《10 的认识》时,我请小朋友们认真观察图,从图中你知道了什么?让学生利用数数的经验上台现场数数后,学生明白10 个人、10 只鸽子都可以用数字10 表示。接着让学生摆小棒操作,知道一捆就是1 个十,所以10 个1 是十。接着我让学生找一找生活中哪些物体的个数可以用数字10 表示。最后让“10”宝宝参加数字排队队,0~9这几个数字宝宝已经按从小到大的顺序排好队了(出示尺子图),10 应该排在哪儿?请计数器来帮忙。学生动手操作先拔8 颗,再添一颗是几颗(使生能直观感觉到9 比8 多1)?9 颗再添上一颗是几颗?10 颗再去掉一颗是几颗(使生感觉到10 比9 多1)?10 应该排在哪儿?回到尺子图,让生猜猜9 的后面是几?请生分别按从小到大、从大到小的顺序读0~10 这几个数字。在以上教学中,我巧妙渗透数形结合的思想方法,使学生在对具体数量的感知和体验中,进一步强化了数感,加深了对数的意义的认识。
2 借形理解,在概念教学中,加强实验操作,渗透数形结合思想方法,使学生直观地理解概念数学概念是知识教学中的重要组成部分,在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行进行全面分析,突出其本质属性,但它的抽象性、枯燥性使得教学效果不尽如人意,学生学起来比较困难。借助直观的图形、加强实验操作可以将概念教学趣味化、形象化,从而帮助学生在轻松、愉快的学习氛围中理解概念的形成过程。
例如:在《认识体积》的教学中,我通过3 个步骤渗透数形结合的思想方法,让学生借形直观地理解概念:2.1 通过实验,使学生体会到物体是占有空间的。教师出示两个一样的杯子,左边的盛满水,右边的放了一个柑果。请同学们猜猜,如果把左边杯子里的水倒入右边的杯子,结果会怎样?学生猜测,并通过实验来验证猜测是否是对的。学生倒水操作明白:原来两个杯子装的水是一样多的,现在放进去一个柑果,杯中有一部分空间被柑果占去了,能装水的空间就少了。使学生体会到物体占有一定的空间。
2.2 通过实验,使学生体会到物体所占的空间是有大有小的。出示两个完全一样的玻璃杯:一个杯子里放的是柑果,另一个杯子里放的是葡萄,如果往这两个杯子里倒水,倒进哪个杯里的水会多一些?学生猜测并再次实验操作,验证猜想:两个杯子能装的水同样多,柑果占的空间大,因而相应杯中的水就少;葡萄占的空间小,因而相应杯中的水就多。
2.3 揭示体积的含义。出示3 个大小不同的水果,这3 个水果,哪一个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?学生实验操作,明确:物体是占有空间的,一个物体越大,它占有的空间就越大,反之,一个物体越小,它占有的空间就越小。我们把物体所占空间的大小叫做物体的体积。学生举生活实例比较两个物体体积的大小,认识体积,我通过三部教学,加强实验操作,渗透数形结合思想方法,学生不仅借形直观地理解概念,而且能够应用概念。
3 看形想量,结合“量的计量”的教学渗透数形结合思想方法,帮助学生建立质量观念数学的主要研究对象是数与形。但在现实生活中,数与形和量与计量总是密切联系着的,学习数学必然要涉及量与计量。如何在量与计量中渗透数形结合呢?
例如《千克的认识》教学:①认识秤和秤面。观察秤面从秤面上看到了什么?②建立1 千克的质量观念。a.掂一掂,初步体验一千克的重量。分小组称一称2 袋盐,通过观察发规2 袋盐重1 千克。b.猜一猜,再次体验1 千克的重量。先猜一猜几个这样的苹果、桔子、桃子重1 千克,最后称一称,数一数1 千克这样的果到底有几个?c.比一比,加深对一千克的认识。师出示一个重2 千克大米,让几名学生拎一拎,说说感觉,猜猜重多少千克,通过比较进一步加深对1 千克的体验。
建立“千克”这个计量单位的观念,对学生来说比较抽象,渗透数形结合的思想方法,学生就很容易建立“千克”的表象,并能运用。
4 看数画形,在解决问题教学中,渗透数形结合思想方法,使解题过程具体化、明朗化数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,
❿ 什么是数形结合思想
数形结合思想是一种数学思想方法。数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
基本思想是:我国着名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休。”“数”与“形”反映了事物两个方面的属性。数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的。
(10)数学中如何做到数形的结合扩展阅读
数形结合应用要点
1、 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
2、 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合 。
3、纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4、数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
5、数形结合思想的论文:数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。
参考资料来源:网络-数形结合