⑴ 数学推理方法有哪几种
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。
推理方法有两种:
1,常规推导方法,从公理或已知的命题推导出该命题成立,即证明该命题是已知公理的子命题。要点是要理清命题以及给出条件的含义,找出该命题的等效含义和条件,最好是转化为数值等式关系,然后符号演算,这种演算方法通用性强,在一些特殊情况下也转化为直观的几何关系,通过直观的几何关系证明,但几何的方法需要灵感,不通用。
2,归谬方法,假设该命题不成立,推导出矛盾的命题,从而证明该命题成立。适用的场合比较有限,不作介绍。
⑵ 小学数学推理方法
把不同排列顺序的意识进行相关性的推导就是逻辑推理。简而言之可以理解为宇宙中任意基本“原件”的排列组合得出的现象或概念,属于唯心主义范畴。假如存在不同的感知系统,对于“同一组基本原件”在特定时空的排列组合方式所呈现的现象或概念,可以得出不同的逻辑推理方式。
基本依据:
当对一个命题的正确性进行判断时,一个东西不能同时是什么又不是什么,不可能同时是甲又是乙,如果出现这种情况,就说明在逻辑上是矛盾的。
一般解法:
从某一个条件出发,根据其他条件进行正确推理,如果最后得到的结论满足全部条件而不出现矛盾,这就是所要求的方案;如果得到相互矛盾的结果,就必须改换其他条件重新开始,知道得出满足条件的方案为止。
⑶ 初中数学推理方法有哪些
数学推理方法主要是因果推理,有从因到果的推理,也有从果到因的逆向推理。不管是方程还是几何的证明,都需要用到因果推理方法。其次也用到假设推理和条件推理。
⑷ 数学推理常用方法
1.推理和推理规则 推理 推理规则 两规则 替换规则 2. 证明方法 直接证明方法 CP规则 反证法 1.推理和推理规则 什么是推理? 推理的例子:设x属于实数, P: x是偶数, Q: x2是偶数。 例1. 如果x是偶数, 则x2是偶数。 x是偶数。 x2是偶数。 1、推理和推理规则 刚才的例子表明了研究推理规则的重要性。 推理规则:正确推理的依据。 任何一条永真蕴含式都可以作为一条推理规则。 例:析取三段论: 如果,P:他在钓鱼,Q:他在下棋 前提:他在钓鱼或下棋; 他不在钓鱼 结论:所以他在下棋 定义1:若H1∧H2∧ …∧Hn ? C, 则称C是H1, H2, …, Hn的有效结论。 特别若A ? B, 则称B是A的有效结论,或从A推出B。 常用的推理规则 1) 恒等式(E1~E24) 2) 永真蕴含式(I1~I8,表1.5-1) 3) 替换规则,代入规则 4) P规则和T规则 P规则:(前提引入) 在推导的任何步骤上,都可以引入前提。 T规则:(结论引用) 在推导任何步骤上所得结论都可以作为后继证明的前提。 永真蕴含式 运用推理规则形式化证明 例1:考虑下述论证: 1. 如果这里有球赛, 则通行是困难的。 2. 如果他们按时到达, 则通行是不困难的。 3. 他们按时到达了。 4. 所以这里没有球赛。 前 3 个断言是前提, 最后1个断言是结论, 要求我们从前提推出结论。 3. 证明方法 1). 无义证明法 证明 P ? Q为真,只需证明P为假。 2). 平凡证明法 证明 P ? Q为真,只需证明Q为真。 无义证明法和平凡证明法应用的次数较少, 但 对有限的或特殊的情况, 它们常常是重要的。 3. 证明方法 证: (1) C?D P (2) ?( ? C) ?D T,(1),E1 (3) ? C → D T,(2),E14
⑸ 数学里的推理与证明分为哪几种
1,推理:合情推理、演绎推理 2,间接证明:反证法 3,数学归纳法
⑹ 数学中常见的合情推理是什么
1、归纳推理
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概栝出一般结论,(简称归纳)部分推出整体,个别推出一般。
例如:哥德巴赫猜想
可以把77写成三个素数之和:77=53+17+7;
可以把461写成三个素数之和:461=449+7+5;
……
任何大于7的奇数都是三个素数之和。
2、类比推理
由两类对象具有某些类似特性和其中一类对象的某些已知特性,推出另一类对象也具有这些特性的推理称为类比推理。简言之,类比推理是由特殊到特殊的推理。
例如:乘法交换律和结合律
加法作为一种运算,具有交换律和结合律;
乘法作为加法的一种简便运算,也应该具有交换律和结合律。
3、合情推理
类比推理和归纳推理的过程如下:从具体问题出发——观察、猜想、比较、联想——归纳、类比——提出猜想。
可见,归纳推理和类比推理都是根据已有的事实,经过观察、猜想、比较、联想,再进行归纳、类比,然后提出猜想得推理。我们把它们统称为合情推理。
合情推理是指“合乎情理”的推理。数学研究中,得到一个新结论之前,合情推理常常能为我们提供证明的思路和方向。
⑺ 推理的数学方法有哪些
数学归纳法——顺藤摸瓜,由近及远长长的一队士兵走在路上.将军把一句口令告诉最前面的士兵,这个士兵开始把口令往后传.如果每个士兵听到口令之后都往后传,这个口令自然会传遍全队.类似地,如果有一串句子,按顺序一个一个排好了,也会产生这种多米诺骨牌现象:
⑻ 推理有哪些类型
推理
tui li
由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程。其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识。推理主要有演绎推理和归纳推理。演绎推理是从一般规律出发,运用逻辑证明或数学运算,得出特殊事实应遵循的规律,即从一般到特殊。
需要注意的是:如果不能考察某类事物的全部对象,而只根据部分对象作出的推理,不一定完全可靠。
推理是形式逻辑是研究人们思维形式及其规律和一些简单的逻辑方法的科学。
思维形式是人们进行思维活动时对特定对象进行反映的基本方式,即概念、判断、推理。思维的基本规律是指思维形式自身的各个组成部分的相互关系的规律,即用概念组成判断,用判断组成推理的规律。它有4条:即同一律、矛盾律、排中律和充足理由律。简单的逻辑方法是指,在认识事物的简单性质和关系的过程中,运用思维形式有关的一些逻辑方法,通过这些方法去形成明确的概念,作出恰当的判断和进行合乎逻辑的推理。
学习形式逻辑知识,可以指导我们正确进行思维,准确、有条理地表达思想;可以帮助我们运用语言,提高听、说、读、写的能力;可以用来检查和发现逻辑错误,辨别是非。同时,学习形式逻辑还有利于掌握各科知识,有助于将来从事各项工作。
一、推理及其语言形式
推理是由一个或几个已知的判断推出一个新的判断的思维形式。例如“客观规律总是不以人们的意志为转移的,经济规律是客观规律,所以,经济规律是不以人们的意志为转移的”,这段话就是一个推理。其中“客观规律总是不以人们的意志为转移的”,“经济规律是客观规律”是两个已知的判断,从这两个判断推出“经济规律是不以人们的意志为转移的”这样一个新的判断。任何一个推理却包含已知判断、新的判断和一定的推理形式。作为推理的已知判断叫前提,根据前提推出新的判断叫结论。前提与结论的关系是理由与推断,原因与结果的关系。
推理与概念、判断一样,同语言密切联系在一起,推理的语言形式为表示因果关系的复句或具有因果关系的句群。
常用“因为……所为……”“由于……因而……”“因此”、“由此可见”、“之所以……是因为……”等作为推理的系词。
二、推理的种类
推理按推理过程的思维方向划分,主要有演绎推理、归纳推理和类比推理。
1.演绎推理
它是由普遍性的前提推出特殊性结论和推理。
演绎推理有三段论、假言推理和选言推理等形式。
2.归纳推理
它是由特殊的前提推出普遍性结论的推理。
归纳推理有以下几种类型:
3.类比推理
它是从特殊性前提推出特殊性结论的一种推理,也就是从一个对象的属性推出另一对象也可能具有这属性。
三、推理的几种具体方法
a. 三段演绎法:-由一个共同概念联系着的两个性质判断作前提,推出另一个性质判断作结论的推理方法。
b. 联言分解法:-由联言判断的真,推出一个肢判断真的联言推理形式的一种思维推理方法。
c. 连锁推导法:-在一个证明过程中,或一个比较复杂的推理过程中,将前一个推理的结论作为后一个推理的前提,一步接一步地推导,直到把需要的结论推出来。
d. 综合归纳法:-以大量个别知识为前提概括出一个一般性结论的推理方法。
e. 归谬反驳法:- 从一个命题的荒谬结论,论证其不能成立的思维方法。