Ⅰ 数学符号都有那些都是什么意思
整理了一些重要的数学符号。
有理数集Q
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数集合Z
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集R
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
Ⅱ 这个数学符号是什么意思
这个符号是包含的意思。例如
A⊂B,表示A包含于B.
希望采纳!
Ⅲ 数学的符号有多少个
小学算术里,我们认识了自然数1,2,3,……,分数1/2,2/3,……,小数0.5,1.3,……,圆周率π=3.1415926……,经常用这些数进行+,-,×,÷四则运算。这些数学符号已经成为我们的朋友。
1+2表示什么?它可以表示一个人加上两个人,也可以表示一棵树加两棵树,还可以表示其它的事物。数学符号可以表示十分广泛的客观事物,又简单实用。这是其它语言无法比拟,也正是数学符号的威力和奥秘所在。
数学符号有多少个呢?据统计,初、高等数学中经常使用的数学符号有两百多个,中学数学中常见的符号也有一百多个。
表示数的字母及表示几何图形的符号,叫做元素符号。例如,用a,b,c表示已知数,用x,y,z表示未知数;在证明两个三角形全等时,用(s,s,s)表示三条边对应相等,(s,a,s)表示两边及其夹角对应相等,(a,s,a)表示两角及其夹边对应相等,以及圆周率π,单位虚数i,自然对数的底e,这些都是元素符号。还有1,2,3, 1/2,2/3,0.5,1.3,它们都是元素符号。
+,-,×,÷表示表示数之间进行加法、减法、乘法、除法运算。这种表示按照某种规则进行运算的符号叫做运算符号。两个集合的并集(∪),交集(∩),对n进行求和(∑[1≤k≤n]f(k)),不定积分(∫f(x)δx ),从a到b的定积分(∫[a:b]f(x)δx),这些都是运算符号 。
等号(=),近似等号(≈),不等于号(≠),大于号(>),小于号(<),恒等或同余号(≡),相似号(≈),全等号(≌),这些符号表示数、式或图形之间的关系,叫做关系符号。还有平行符号(‖),垂直符号(⊥),比符号(∶),属于符号(∈),这些都是关系符号。
在数学里,还有一些约定的符号,以表示特定的含义或式子。因为(∵),所以(∴),n个元素中取出m个元素的组合数(C(n:m)),n个元素中取出m个元素的排列数(A(n:m)), 这些叫做约定符号。
还有一些符号,例如圆括号(()),方括号([ ]),花括号({})等等,叫做辅助符号,又叫做结合符号。
数学世界真是一个符号的大千世界!
数学符号是怎么样产生的呢?
我国是民界上文化发达最早的国家之一。数码这种数学中的元素符号,早在公元前两千年就在我国产生了。汉朝刘向写的一本书《世本》中,就有这样一句话:“黄帝时,隶首作数”。公元前一千年左右,文王周公所撰《易系辞》中就有“上古结绳而治,后世圣人易之以书契”的记载。
在代数中,最早使用一整套数学符号的,一般认为是古西腊的丢番都(Diophantus,约前330-246).后人把他的代数称为缩写代数,而把古埃及、古巴比伦人的代数称为文字叙述代数。这种文字叙述代数,一直延缓到欧洲文艺复兴时期。
十五世纪,在德国人瓦格涅尔和韦德曼的着作里,首先使用“+”和“-”这两个符号,表示箱子重量的“盈”和“亏”。后来才被数学家用作加号和减号。“×”号是由十七世纪的英国数学家欧德莱最先使用的。“÷”号是十七世纪由瑞士人拉恩创造的。
“=”号是英国列科尔德在论文《砺智石》中提出的。方括号[]和花括号{}是法国数学家韦达(Verte,1540-1603)引入的。“∶”是法国数学家笛卡儿(Descartes,1506-1650)首先使用的。∽、≌和dx(微分)是德国数学家莱布尼兹(Leibniz,1646-1716)创用的。
导数符号”f1(x)”、”y1”是法国数学家拉格朗日(Lagrange,1736-1813)创造的,不定积分“∫”是瑞士数学家宝贝努里首先使用的,定积分“∫[a:b]f(x)δx”(这里是网络写法)是法国数学家富里哀(Foueer,1768-1830)发明的。
瑞士数学家欧拉(Euler,1707-1783)一生创造了许多数学符号,如π,e,sin,cos,tan,∑,f(x)等。法国数学家柯西(Cauchy,1789-1857)也是符号大师,行列式的两条竖线是他于1841年引进的。
上面列的一长串清单,显示了数学中一部分符号的来历。从中可以看出,数学符号是人类集体智慧的产物,是一代代数学家心血的结晶。
科学的发展,不断对数学提出新的要求。数学的发展过程中,不断产生新的数学符号,同时逐渐淘汰那些不适用的数学符号。如
中国的古代数学也有自己的一套符号,在历史上曾起过积极的作用。但与西方相比,自显繁复,不便于应用。例如,在普通新代数教科书(1905年)仍把未知数x,y,z写成天,地,人,把已知数a,b,c写成甲,乙,丙,把数字1,2,3写成一,二,三。在这样的符号系统下,本来很普通的代数式写成了十分繁琐艰涩的形式。
这样的符号当然属于淘汰之列。我国系统地采用现代数学符号,是在辛亥革命(1910年)之后。1919年“五四”运动以后才完全普及。
现代的数学符号,由于它含义确定,表达简明,使用方便,从而极大地推动了数学的发展。在数学里,有人把十七世纪叫做天才的时期,把十八世纪叫做发明的时期,在这两个世纪里,为什么数学有较大的发展并取得较大成就呢?究其原因,恐怕与创造了大量的数学符号不无密切的联系。
甚至有的专家指出,中国古代数学领先,近代数学落后了,原因之一就是中国没有使用先进的数学符号,从而阻碍了数学的发展。这话虽然有偏颇的一面,但的确道出了数学符号对数学发展所能起的重要作用!
数学符号威力巨大、魅力无穷。它是数学中特殊的“文字”,记录和传递着丰富的数学信息,它也是无声的音符,在人们的心灵深处激荡出美妙的乐章,它更是深奥严谨的数学理论的“源泉”之一,滋润着文明之花。作为一名中学生,请重视对数学符号的学习引用吧!只有这样,才能使我们的思维更加敏捷、严谨和深刻。
Ⅳ 数学符号“λ ”用中文怎么念表示什么意思
数学符号“λ ”,中文名为兰木达,英语全称为Lambda,读音为['læmdə]。
“λ ”为希腊字母表中排序第十一位的字母。作为数学符号,小写字母“λ”为线性代数中的特征值。在物理上,小写字母“λ”表示波长符号以及放射学的衰变常数。其大写为“Λ”,在粒子物理学上,是Λ重子的符号。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。
(4)数学符号套是什么意思扩展阅读:
1、Α α alpha a:lf 阿尔法 角度;系数
2、Β β beta bet 贝塔 磁通系数;角度;系数
3、 Γ γ gamma ga:m 伽马 电导系数(小写)
4 、Δ δ delta delt 德尔塔 变动;密度;屈光度
5、 Ε ε epsilon ep`silon 伊普西龙 对数之基数
6、 Ζ ζ zeta zat 截塔 系数;方位角;阻抗;相对粘度;原子序数
7、 Η η eta eit 艾塔 磁滞系数;效率(小写)
8 、Θ θ thet θit 西塔 温度;相位角
9、 Ι ι iot aiot 约塔 微小,一点儿
10、 Κ κ kappa kap卡帕介质常数
11 、∧ λ lambda lambd 兰布达 波长(小写);体积
12 、Μ μ mu mju 缪 磁导系数;微(千分之一);放大因数(小写)
13 、Ν ν nu nju 纽 磁阻系数
14 、Ξ ξ xi ksi 克西
15、 Ο ο omicron omik`ron 奥密克戎
16、 ∏ π pi pai 派 圆周率=圆周÷直径=3.1416
17、 Ρ ρ rho rou 肉 电阻系数(小写)
18、 ∑ σ sigma `sigma 西格马 总和(大写),表面密度;跨导(小写)
19、 Τ τ tau tau 套 时间常数
20、 Υ υ upsilon jup`silon 宇普西龙 位移
21、 Φ φ phi fai 佛爱 磁通;角
22、 Χ χ chi phai 西
23、 Ψ ψ psi psai 普西 角速;介质电通量(静电力线);角
24、 Ω ω omega o`miga 欧米伽 欧姆(大写);角速(小写);角
Ⅳ 数学符号是什么意思 数学符号解释
1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
2、例如加号曾经有好几种,现代数学通用“+”号。“+”号是由拉文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。
3、也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
4、到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
5、乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
6、到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
7、“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
8、平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。
9、十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
10、1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。
11、大于号“>”和小于号“
Ⅵ 在数学中这三个符号是什么意思读作什么
阿尔法
伽马
贝塔
详见希腊字母表。
Ⅶ 数学符号是什么意思
数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。
我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。
其他信息
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010及2010版以上软件为例介绍操作方法:
打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。
在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
Ⅷ 所有数学符号具体含义
网络一下“数学符号具体含义”,你就知道!
http://wenku..com/view/d964dcba1a37f111f1855b09.html
Ⅸ 数学中的符号是什么意思啊
数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅ :空集(不含有任何元素的集合)
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。