Ⅰ 浙江师范大学学科教学考研的初试科目是哪些
1、浙江师范大学学科教学考研的初试科目是
(101)思想政治理论
(204)英语二
(333)教育综合
(***)报考学科的专业课如语文是考(903)阅读与写作;数学是考(904)数学分析与高等代数等等
2、去研招网或者学校官网查看【硕士专业目录】,或网络搜索《浙江师范大学2015年硕士研究生招生专业目录》即可了解。
Ⅱ 浙江师范大学数学与应用数学系大一都学些什么啊
你可以进入学校教务处网站,查找“本科教学计划”,就可以知道数学专业的课程安排了。由于部分课程在转专业的时候可以转换成相应的学分,你最好去教务处那里问一下,有的课大二的时候就不用补上了。
现在转专业很看重成绩,而且数学专业算是门槛较高的。这个学期你一定要拿到高分,学年成绩在现在专业的排名要达到前30%才有资格申请转专业。
Ⅲ 数学系要学哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数
Ⅳ 浙江大学数学系考研要考哪些科目
需要考《数学分析》,《高等代数》,《解析几何》,具体2011年是什么,你还需要到浙大官网去看看招生简章。
Ⅳ 报考浙师大研究生学科教育(物理)或者(数学) 除了政治英语,要考哪些科目
还有专业课,一门高数,一门你报考的专业课。再加上英语,政治,一共是4门500分
Ⅵ 大学本科数学专业的,都要学哪些科目
按专业以后的发展方向来分:
1、纯粹的数学专业主干课程:初等数论、概率论与数理统计、数学教学论、小学数学教材教法、数学分析选讲、复变函数、近世代数、高等代数选讲、数学教育学等 、数学与应用数学。
2、应用数学主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。
3、信息与计算科学专业主要课程:数学分析、高等代数、几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。
Ⅶ 介绍一下数学系的主要学习科目
数学系专业必修课程,主要包括:高等代数,数学分析,常微分方程,复变函数,解析几学,拓扑学,实变函数,概率,数理统计等,这些课程主要是大一大二修,,学校不同,开设的略有不同。
师范类还设中学数学教学法,教育学、心理学;选修的有组合数学,数学软件,小波分析,微分流形,偏微分方程,数学史等
希望帮到你
Ⅷ 数学系考研要考哪几门
考研数学有四个。除了数学一、数学二,此外还有数学三、数学四,区分的标准是根据你的方向不同而定。全部如下:
数学一:包含线代,高数,概率。适用的学科为:
1.工学门类的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业.
2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.
3.管理学门类中的管理科学与工程一级学科
按此划分,绝大多数院校的计算机专业都会选择考数学一,这也是从事计算机所必须的最低数学功底。
Ⅸ 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数