㈠ 如何做数学归纳总结
数学很好学啊, 学数学要注意以下几点:
一:上课不要走神,走在老师前边,把老师要讲的东西提前看看.
二:多做习题,把握好一定"类题"的解法,何为“类题”呢?就是包含知识量比较多并且可以延伸的那种题。比如说,考查立体几何题目你要知道如何去运用,把涉及到三垂线定理等常考的地方总结一下。还有函数的题目也是,靠分高但考点单一,能找到特点就好办了。
三:要树立自信,考试遇到多选的题目不要还怕选多了,可能一开始答案错得很多但要相信自己的感觉,错了在下面好好总结总结,相信经过多次磨练你一定会有所提高的!
四:遇到问题要勤问最好多问老师,以为老师一般讲得比较详细,另外多问些问题可以增强老师对你的印象这有助与搞好师生关系,对学习是有帮助的
好了就先说这些吧,其实学习方法主要靠自己总结的,我也始终相信只有自己的才是最好的!好了祝你学习进步,理想成真!
㈡ 数学,如何做第5
㈢ 如何做,数学
㈣ 如何做数学!!
㈤ 浅谈如何做数学,学数学
作为一名数学教师,我们可能都会有过这样的经历与困惑:某种类型的问题曾经对学生讲过,甚至讲过不止一次,但到考试再出现类似的问题时,有的学生还是做不出来,正确率并没有我们想象的那么高。到讲评试卷时,便责怪学生上课时没有认真听讲,于是把此类问题再讲一遍,并提醒学生这一次一定要认真对待。本以为这次学生一定理解并掌握了,此类问题的解决方法,并“发狠”说此类问题以后再也不讲了。可是结果事与愿违。似乎陷入一个恶性循环的怪圈,面对这种怪圈,表现出来的是无奈和无助……
这迫使我不得不反思自己平时的教学活动:每次都是我讲学生听,有的学生并没有完全听明白解决问题的方法,或者听明白了,但没有动手做一遍,时间一长就忘了。就象游泳教练在岸上教学员游泳一样,游泳的动作和姿势教得再好,不到游泳池里去游,不喝几口游泳池里的水,是学不会游泳的。这个道理人人都懂,但到教师的课堂上真正实施起来却是那末困难……
随着学习新课改理念的逐步深入,我越来越意识到数学是做出来的,只有让学生做数学才能学好数学。数学发展史告诉我们,每一个重要数学概念的形成和发展,其中都蕴涵着丰富的经历:如无理数的发现,勾股定理的证明,平面直角坐标系的建立等,无不充满着人类探索的情意,其中既需要人们依赖已有的知识经验进行观察、实践、归纳,猜想等理性思考过程,也需要人们对真理不懈追求的勇气。也就是说,在形式化的数学这一“冰冷的美丽”里面,蕴涵着人类“火热的思考”,在它的形成过程中蕴涵着丰富的生活意义。那末,在数学教学中,应如何引导学生做数学学数学呢?
一、创设良好的问题情境,将学生带入问题中
问题是数学活动的心脏。将数学定义定理,公式等形成过程转化为富有生活意义的问题,形成问题情境,从而把学生带入问题中,在问题的探究中做数学,学数学。因此教学中,应尽可能把知识的发生过程转化为一系列带有探究性的问题,真正使有关材料成为学生的思考对象,使数学学习成为学生内在的需求。
二、引导学生进行数学的再创造
荷兰着名数学家弗赖登塔尔认为,数学教学原则之一是数学的“再创造”。他认为,对学生和数学家应同样看待,让他们拥有同样的权利,那就是通过再创造来学习数学,而不是因袭和仿效。“再创造”理论认为,教师不必把各种概念,法则,性质,公理灌输给学生,而是应象数学家当时发现这些性质一样,创造适合的条件,让学生在实践活动中自己发现数学知识的来拢去脉。
例如:过去我们讲平行四边形时,先演示一些平行四边形的图形,学生也能掌握什么是平行四边形,这就象告诉儿童什么是椅子,桌子一样的一种抽象化,并没有什么神秘。但是现在通常的过程却是教师给出平行四边形的一个形式定义,于是又一个层次被跳过,学生又被剥夺了创造定义的机会,甚至还有更糟的,因为这个阶段,学生根本不可能理解形式定义,更无法理解形式定义的目的和意义。如果允许一个学生重新创造几何,他会怎么做呢?给他一些平行四边形,他会发现许多共性:如:对边平行,对角相等,邻角互补,对角线互相平分及平行四边形能平面镶嵌等……接着他会发现,由一个性质还可导出其他性质等。也许不同的学生会选择不同的基本性质。由此,学生就抓住了形式定义的基本含义,它的相对性等……通过这样的过程,学生学会了定义这种数学活动,而不是将定义强加于他。
我在讲平行四边形性质这节内容时,先让学生自制了平行四边形的模型。课堂上分组交流:先量一量对边再量一量对角,看有什么关系?也许是受传统思想束缚太深,学生量完后,异口同声回答:“平行四边形对边相等,对角相等。”我告诉大家,这种测量其实失去了意义。你量出来的边角真的丝毫不差相等吗?这时学生又反思自己测量过程,把真实的测量结果说了出来。一位学生量得:一组对边分别是10.8cm,10.7cm另一组对边分别是5.3cm,5.4cm。同学们都知道,这种误差是由测量工具造成的,是允许的。那么我们猜一猜,平行四边形对边有什么性质呢?同学们回答:相等。那么让我们试着证一证。通过这样的操作,学生不仅进行了平行四边形性质的再创造过程,更进一步理解了测量——猜想——证明之间的关系。我风趣地说:“这节课人人都当了一回数学家!”在做中学是弗莱登塔尔的主要教育思想,新课标中加强了这方面的要求。在数学课堂教学中,谁给学生提供在做中学的机会多,条件多,谁就提高了学生再创造数学的能力。“我听说了,就忘了,我看见了,就领会了,我做过了,就理解了。”这句名言突出了做的重要性。
三、开展主动有效的数学交流
有效的数学学习活动主要表现为自主探索与合作交流,而不是复制与强化,成功有效的数学交流是建立在积极主动的参与之上的,数学交流这种特征在学生自发的探讨中表现得非常明显。
教育心理学研究表明:学生如果只听老师讲,不去看书,只能,记得所听内容的15%,如果只看书,而不听讲,只能记得所看内容的25%,如果看了又听就可记得所学内容的65%。在数学教学中,应努力利用一切机会,让学生动手实践,动手做数学,在做中学。让学生经历探索研究的过程,发挥他们的创造潜能。
㈥ 怎样做数学快
非常同意楼上的说法:
1.数学做题很重要(不能盲目地做,根据老师平时讲的题目,选择性地做题;自己不会做的题目可以稍稍看看答案,然后记住,不要抄,自己看能不能理解地写出正确答案)
2.认真听课(不管你喜不喜欢那个老师,课最好还是听,然后做笔记,因为老师讲的老师已经消化的,然后再让你们接受,你可以从中潜移默化地学习其思考题目的方式;听课跟不上就跳过,不能这道题目不懂,接下来的又没有听到)
3.关于做笔记(不管老师说的东西同学觉得有多简单都好,只要是你认为你不懂或者是对你有用的,你就要记下,用红色或者显眼的颜色以后可以复查;不要抄别人的笔记,一定要自己做,因为你和别人的理解方式不一样)
4.不懂的问题(自己想想,可能你想不出来,可是也会增加对题目的熟悉程度,然后去问老师同学,一定要不不耻下问)
㈦ 如何做数学ppt课件
可以用专门做数学课件的工具做,或者去下载一个做一下修改,如果制作课件建议用101教育PPT,里面的课件质量还不错,而且是免费的。网络搜索一下,就能下载了。
㈧ 如何做数学,做时应该注意些什么
数学最重要的就是运用所给出的各种条件,并由此推出算出其他未知条件.所以做题时首先要考虑题目给出的条件,以及如何应用这些条件,另外要学会从这些条件就能联想到会考到那些公式那些定理.最后是要懂得取巧,注意有那些灵巧的办法,而不是一味死脑筋钻一处
㈨ 如何做数学作业
学习数学离不开做题,但学习数学不是为了做题。做数学题并非越多越好,而贵在做得精彩!老师讲完一节课后都要留适量的作业,其作用有三:一是巩固当天所学相关的知识点,二是考察学生对各知识点的理解与掌握情况,三是培养学生严谨有序的作风。由于作业有一定的针对性,所以我们写作业前要回顾当天所学的知识点、题目类型、解题方法与技巧。 做题的关键是分析题,我们要有一个正确的分析方法。这里给同学们介绍“两边夹分析法”,就是从题目的已知与结论两方面分头分析。 一方面先从结论分析,看这个题是让我们求什么的?属于哪个题型?要思考做这个类型的题目有多少种方法,每一种方法又需具备什么条件与背景;另一方面是从已知条件分析,要查看共有几个已知条件,每个已知条件能为我们提供什么信息,分析各条件间的联系,判断各条件能为我们创造什么样的解题背景。接下来要思考已知条件所提供的信息是否就是求解所需要的信息,如果是,这题的思路就打通了。如果不是,要看已知与结论还有多大的差别,十分另有隐情,能否通过各已知条件推导出所隐含的条件,这样已知信息与所需信息就沟通了。 “两边夹分析法”归结为一句话就是“由结论想方法,由已知想性质”。要熟练使用“两边夹分析法”,要求我们平时在学习中,一方面要熟练掌握每一个知识点,同时还要针对某一题型积累它的各种解题方法。这样我们在分析问题时犹如探囊取物,游刃有余。 如果一道题做好了,我们的思考不应该停止,还要让我们的思维再上一个台阶。可以做以下几点尝试:①此题用本节课的知识点能做,能否用其他章节的知识(或工具)来处理。比如一个不等式问题,能否用函数方法做,能否用向量方法做,能否用三角方法做,能否用平面几何方法做,能否用解析几何方法做等。这样不仅能一题多解,也使不同章节的知识得到联系。 ②思考此题的已知条件能否减少,能否改变,这样结论将有何变化,解题方法将有何变化?③思考此题的结论能否改变问法,解题方法将有何变化?④思考能否把已知与结论交换位置,用逆向思维的方式构造一个新题目,这题能否可解,解法如何?你若能做了上述思考,那么对训练你的思维能力大有益处。 最后要嘱咐大家的是,做题步骤要完整,推理要严密,作图要准确。要养成这样的好习惯,才可能在考试中取得更多的“步骤分”。