① 怎样引导学生建立数学模型解决实际问题
经过多年的课堂教学实践,让我深深体会到数学教育的根本仼务,在于教会学生如何学习、如何应用知识解决实际问题,作为数学教师,应该教育自己的学生学会把实际问题转化为数学问题加以解决,即建立数学模型。也许很多教师都会问:“为什么自己的学生这么笨,解决实际问题的能力这么差”,其实这些问题跟我们平时的教学有很大的关系,正因为我们没有对学生进行建立数学模型的系统训练,没有培养学生的建模意识,因此,学生解决问题的能力得不到提高,影响了学生的学习成绩。所以,本人认为,我们数学教学中的一个重点是培养学生的建模意识,训练学生的建模能力。把实际问题转化为数学问题是绝大多数初中学生的难题,只有在教学中有意识的培养学生的建模思想,才能帮助学生克服这一难题,释放出学习和解决实际问题的强大动力。那如何构造数学模型呢?
一、对数学建模的认知
在课堂教学中,要想培养学生运用数学模型去解决实际应用问题的意识,成功建立起数学模型,就必须让学生首先认知数学模型。数学模型是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。一切数学概念、各种数学公式、方程式、各种函数关系式等都叫做数学模型。
建立数学模型的方法是把实际问题构造成相应的数学模型,通过对数学模型的研究,从而解决问题的一种数学方法,通常分以下三个步骤。
第一,把实际问题的特点进行数学抽象,构造适当的数学模型。
二、数学模型的常见类型
在课堂教学中,我把初中阶段常见的数学模型分为四类:①三角函数、函数模型;②方程、不等式模型;③几何模型;④统计模型。下面以课堂教学中的案例进行分类说明。
三、明确学生数学建模障碍,寻找解决方法
第一,初中数学实际应用问题中,常常有许多其他知识领域的名词术语,由于学生与外界接触较少,对这些名词术语感到陌生,不知其意,从而就无法读懂题,无法正确理解题意,更谈不上解决问题。比如对实际生活中的方向角、坡角、采光度、利率、利息、利润、打折等概念不理解,影响了学生构建数学模型。针对学生此方面的障碍,我通过让学生运用网络平台及教师讲解的两种方式,将这些名词的意思完全弄明白后,教师再分析讲解,从而顺利建立数学模型来解决实际问题。
第二,数学建模方法是利用数学知识和数学方法解决实际问题的一种脑力劳动,许多学生,特别是农村中学生不具备良好的心里品质,所以缺乏对解决实际问题的信心。针对此建模障碍,数学教学中要重视数学应用意识的培养,注重学生各种数学能力的训练,如数学语言、阅读理解等。具体讲,应做好以下几个方面的教学。
1.让学生体验数学,品尝成功的喜悦,着力培养学生的自信心
在平时的教学中,应加强实际问题的教学,使学生从生活中发现数学、创造数学、运用数学,并在此过程中获得足够的自信。例如,教学储蓄存款利息计算方法时,可以组织学生到银行去实地调查,并向学生提出问题:如何选择储蓄存款的期限定利率,假设向银行存款5000元,试计算3年后可得的利息金额,存款方式分别为:①1年定期,每年到期后本息转存;②先存2年定期,到期后本息转存;③3年定期,整存整取。以上几种存款方式,哪种所得的利息最多?请用所学的数学知识讨论所得结论。这次调查使学生突破了对存款利率、利息计算的心理恐惧,并根据调查数据计算出了存款得息最多的方式,且多数学生能用数学原理去解释和说明。从上面的例子可以看出,在教学中要注意联系身边的事物,为学生创造体验数学的机会,就能增强学生数学建模的信心。
2.培养学生阅读理解能力
通过阅读有助于学生探究能力和自学能力的培养,受自身阅读分析能力、数学基础知识掌握程度以及数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来。例如,马航MH370失联后,我国政府积极参与搜救,某日,我国两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.5°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处:①求可疑漂浮物P到A、B两船所在直线的距离;②若救助船A、若救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处。根据课堂调查,学生阅读了以上题目后,问其想到了什么数学知识,建立怎样的数学模型来解决问题,许多学生答不出来。我认为原因在于学生存在把主要语言换成数学语言的转换障碍,从而无法将实际问题建立起数学模型,因此,数学教学必须重视数学阅读,作为数学教师,不仅要重视培养学生的阅读能力,还要交给学生科学有效的阅读方法,使学生认识到数学阅读的重要性。
总之,培养学生解决实际问题的能力,就是培养学生的建模能力,对提高学生学习兴趣,培养创新意识具有重要的作用。我们平时在教学中要加以重视,并给予学生正确的引导。
② 数学建模思想在小学数学教学中的应用
数学建模思想应用在小学数学教学中,就是让学习知其然,更要知其所以然,诸如公式定理等都要指导学生探究其来历,不要直接告诉学生结论,如圆周率,让学生亲自测量得出结论。
③ 如何在小学数学教学中渗透模型思想
数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,具有鲜明的阶段性、初始性特点,它更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在此基础上,初步形成模型思想,提高学习数学的兴趣和应用意识。
【教学片段】
出示情境图。
师:谁来说一说第一幅图,你看到了什么?
生:从图中我看到了有5个小朋友在浇花。
师:第二幅图呢?
生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。
师:你能把两幅图的意思连起来说吗?
生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?
生:有5个小朋友在浇花,走了2个,还剩几个?
生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?
(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)
师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)
生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?2、3又表示什么呢?
……
师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。
生2:树上有5只小鸟,飞走2只,还剩3只。
……
除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”意义。
再比如,在小学阶段,学生认识小数时主要是将它和分数之间进行意义上的关联,即:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。按照螺旋上升的教材编排原则,上述内容大多分解在三、四年级分两次学完,三年级先认识一位小数。如何在三年级初步认识一位小数时就体现出“建模”的思想呢,我进行了如下教学:
课始,教师出示到超市购买的一些物品和相应的价钱:水彩笔12元、美工刀3元5角、铅笔0.4元。当“0.4元”出现后,教师提问:
师:知道“0.4元”到底是多少钱吗?
生:0.4元就是4角钱。
(板书4角=0.4元)
师:4角钱有没有1元多?
生:没有。
师:看来,和1元相比,0.4元只能算是一个“零头”了。如果我们用这样的一个长方形来表示1元(出示图1),你能把它分一分、涂一涂,将0.4元表示出来吗?
图1 图2
(学生拿出练习纸画画涂涂,把自己的想法表示出来。交流时,寻找共性特点:平均分成10份,涂出其中的4份)
师:为什么这样就将“0.4元”表示出来了呢?
生:因为1元等于10角,平均分成10份,1份就是1角,4份就是4角。
师:看着大家画出的图示,让我想起以前咱们学什么时,也是这样子平均分一分、涂一涂?
生:分数!
师:那0.4元如果用分数表示,如何表示呢?
生:十分之四元。
师:数学真是有趣,原来0.4元也就是我们熟悉的十分之四元。
(出示图2)
师:老师购买了一块橡皮,它的价钱是多少呢?(出示:0.8元)0.8元是多少钱?
生:0.8元就是8角
师:又是一个不足1元的零头,如果我们还是用这样的一个长方形来表示1元,那0.8元又该怎么表示呢?
学生模仿者刚才的方式表示出“0.8元也就是十分之八元”(见右图)。接着,老师给学生提供一个空白的平均分成10份的长方形,任意涂出其中一部分,表示出一个小数和相应的分数。几个学生自由展示后,组织梳理,从0.1就是十分之一,0.2就是十分之二……
师:接下来我们再来看看笔记本的价格,我给你一个图示(见下图),你知道它的价钱了吗?
生:笔记本的价格是1.2
师:刚才的小数都是“零点几”,现在怎么变成“一点几”了?
生:现在有两个长方形了,第一个涂满了颜色,表示整1元。第二个平均分成了10份,涂了其中的2份,也就是2角钱,0.2元,合起来就是1.2元了。
师:我买的钢笔的价钱是8.6元,如果让你画一幅图来表示它的价钱,你准备怎样画呢?
生:我准备先画9个大小一样的长方形,然后把前面8个涂满颜色,第9个长方形平均分成10份,涂出其中的6份。
……
上述教学过程抓住了知识间的联系(小数和十进分数的关系)而展开,但又不是停留在教师直接的讲解和“告诉”,而是让学生充分展开探索过程,借助于直观图示的形象支撑,建立起了一位小数的“直观模型”(长方形等分、涂色)。这种形象的“直观模型”既搭起了小数和分数之间的桥梁,也具有强大的“扩展”功能,对后面学习两位小数、三位小数(同样的长方形,只是平均分成100份、1000份)以及抽象概括“小数的意义”具有统摄作用。
从上述两例可以看出,运用建模思想来指导小学数学教学,在很大程度上是要在学生的认知过程中建立起一种统摄性、符号化的具有数学结构特征的“模型”载体,通过这样的具有“模型”功能的载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。当然,对学生“模型”意识的培养和“建模”方法的指导,要根据具体内容和具体年级而有层次不同的要求,低年级要恰到好处地结合日常实例和常规教学对学生进行“模型”及“模型意识”的渗透、点化,高年级则可以更明确地引导学生关注数学学习中“模型”的存在,培养初步的建模能力。
④ 如何在数学教学中让学生学会数学建模
一、数学建模促进相美课程的学习
计算方法足计算机课程重要的组成部分。数值分析与计算方法通常使用C语言等描述算法,复杂的算法描述甚为哕嗦,采用数学软件(Matlab,Mathematica,Maple,MathCAD等)的命令描述算法。既简单又能易于上机实验。求特征根与特征向量、样条与插值、方程和程组求解等,数学软件中使用参数调用标准的函数或过程就可实现问题求解。用于直接计算或验证用算法语言编写的计算方法结果的正确性.颇有裨益。概率统计、规划优化、线性代数、微积分、平面几何与立体几何等科目。数学建模提供了问题求解的极住手段.对这些课程的辅助学习帮助极大。
二、数学建横促进科学问题的探索
自然科学中的许多前沿研究问题不少最终可以归结为某些数学问题。数学建模将这些应用问题的静态特性和静态特性用数据和图形的方式多方面描述,有助于问题的解决。比如离子通道实验反映给药后钾离子浓度的变化过程,用随机微分方程来描述,利用数学吏验模拟和仿真,辅助前沿课题的研究。经济均衡模型的分析和仿真.描述了市场经济的“看不见的手”的强大魔力。我们在课程穿插r诸如此类的我们的研究课题中的应用实例.可知学生已经去感受前沿问题的研究
三、数学建横培彝数学课件创作人才
远程数学教学系统需要制作火的数学课件.制作数学课件存在的主要困难是:如何获得大量的数学对象(数学符号、数学公式,数学表格、数学图形)。数学建模的特点是利用数学软件(Matlab.Mathematica,SAS等),完成复杂的数值计算和符号运算。并分析大量精确的数学图形擞学表格,得到实验结论。数学软件的HTML、TeX、图形输出格式,可以直接用于数学课件的创作。我们在讲授用于数值计算和符号运算、制作图表的数学软件的同时,讲授了呵方便得到高质萤的数学符号和公式的数学排版系统(LaTeX、ams'~X等),由于不少学生已经熟悉网页制作软件(Flash.Firework、Dreamweaver等)和图形处理软件。学生提交的电子版的数学实验报告.梢加润色,顷刻成为高水平的数学课件样本。
⑤ 在小学数学教学中如何建模
数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。数学建模就是建立数学模型来解决问题的方法。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学模型。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,关系、定律、公理系统等。
⑥ 如何在小学数学教学中培养学生的想象力
一、丰富学生想象活动的表象材料
小学生的思维特点是以具体形象为主要形式逐步过渡到以抽象思维为主要形式。而想象是以丰富的表象储备为基础的,只有积累了准确、丰富的表象才能进行海阔天空的想象。因此,在教学中教师要充分利用直观教具和形象化的材料,并经常组织学生去参观、游览等;在实际生活中要引导学生广泛接触各种事物,仔细、全面地进行观察比较,分析综合。
1、借助演示积累表象
在教学过程中,教师通过充分的感性材料,让学生获得全方位、立体的感知,把抽象知识形象化,从而在头脑中留下鲜明的印象。如在教学三角形稳定性和平行四边形易变形的特性时,仅靠感知三角形和平行四边形本身的形状是不能获得明确的认知的,因此学生在头脑中不能真正建立起“稳定”和“变形”的表象。我们在教学中可以先出示用木条做的三角形、平行四边形,并用教具演示,用手从各个不同的方位拉,并可以让学生亲手拉拉,这就很容易在头脑中建立起“稳定”和“变形”的表象。
2、引导操作丰富表象
动手操作能让学生的各种感官都参与到学习中去,从多方位、多角度观察、认知事物,从而在头脑中建立起准确、丰富的表象。如在教学“分数的意义”时,可以让学生动手折纸。学生在活动过程中折出七、八种不同的表示把单位“1”四等分的形状,从而丰富自己的表象。
3、通过电教加深表象
在教学活动中,也可以充分利用现代化的教学手段,向学生传输丰富的、大量的、形象的信息,加深学生的表象认识。如在教学“长方体的认识”中,用多媒体演示长方体的各个面,相对面的大小比较,相对的四条棱,八个顶点等。然后让学生闭上眼睛想象长方体的特征,再用多媒体演示长方体的展开图,从而将长方体的特征深深地印在脑海里。
二、提供学生想象活动的空间时间
小学数学教学,是让每个学生根据自己的体验,用自己的思维方式自由地、开放地去探索、发现、再创造有关的数学知识的过程,从而培养学生的自主意识、探索精神和创造能力。这就需要教师在教学中,借助材料给学生足够的思考空间。
如在复习三角形、平行四边形、梯形的面积时提问,要求学生想象:如果把梯形的上底变得和下底一样长,这时成了什么图形?与梯形面积有什么关系?如果把梯形的上底缩为0,这时成了什么图形?与梯形面积有什么关系?这时如果提供学生想象的空间,让他们利用手中的纸和笔折一折、画一画、量一量、剪一剪,自由讨论、探究。最后,学生会发现:三角形可以看作上底为0的梯形,平行四边形可以看作上底和下底相等的梯形。这样根据问题想象,通过动手“做数学”、然后根据讨论再想象,使有不同差异的学生都能亲身体验获得知识的快乐,同时又进一步认识了三种图形的联系和区别,激发了学生的智慧,培养了学生的能力。
在提供学生想象活动的同时,还需要教师安排足够的时间(可以采取同桌、小组讨论、交流、辩论等形式),让学生充分地去思考、讨论、探索。在这时间内,学生的想象活动将会更为广阔、更为丰富,创新成果也可能在这时间内源源不断地产生。
三、拓展学生想象活动的联想广度
联想往往由某一事物的触发而想象出与这一事物相似,或与之相反的事物形象来的思维过程。通过联想往往可以得到一种崭新的形象,或重现某种表象。例如,当学生看到眼前的两条线段的垂直关系时,会联想到天安门广场上的旗杆,人民英雄纪念碑等形象。当学生求比值时,会联想到除法运算。这些联想的展开,在学生理解、掌握新的知识和解决问题的过程中,具有积极的意义。
在教学中,教师应抓住有利时机,从小引导学生形成自觉地联想能力。如学生理解了“5比9少4”的算理后,要让学生联想到“4比9少5”或“9比5多4”、“9比4多5”等。学生认识了有限小数后,要引导从“有限”联想到“无限”,并追问“从有限小数的意义里,你能反过来理解无限小数的意义吗?”在出示“一条公路,修了五分之三”的条件后,可引导学生从“修了五分之三”联想到“剩下几分之几”。经常这样从已知出发诱导学生展开联想,养成习惯后学生在解题遇到困难时,就会自觉地调整思维,联想出新的意念,产生新的领悟。
当然,还可以运用逆向联想,通过诱导学生运用对比联想,进入与之相反的未知领域,获得新知。如在教学“分数、小数加减混合运算”时,学生掌握了先把分数化成小数来计算的规律后,教师说:“大家已经知道,分数、小数加减混合运算中的分数如果能化成有限小数,就把分数化成小数来算比较简便,那么——,你们这时一定又想到另外的情况,谁来说说想法?”经过诱导,学生会反想开去:式中的分数如果不能化成有限小数该怎么算呢?并且有的学生会自然地想到把小数化成分数来算的办法。这样,学生不仅在对比联想中从正、反两方面把握分数、小数加减混合运算的一般规律,而且经历了由正及反的逆向联想过程。
总之,教和学的活动都离不开想象。教师的教学艺术中充满着想象。富有想象力的教师,会创造性的教,使教学富有成效;富有想象力的学生,会创造性的学,使学习更有收获。
⑦ 如何在小学数学教学中渗透数学思想
摘要: 数学思想方法是人类思想文化宝库中的瑰宝,是数学的精髓。“小学数学思想方法”是在小学数学中运用的研究问题的思想和方法。探讨在小学数学教学中渗透数学思想方法有利于深刻地理解数学的内容和知识体系;有利于提高学生的数学素质;有利于对学生进行美育的渗透和辨证唯物主义的启蒙教育;有利于教师以较高的观点分析处理小学教材。本论文从分析教材和参考教育资料上探讨小学数学教材中数学思想方法的重要性,搜索和概括小学数学中几种常用的数学思想方法及教学策略,例如符号化思想、数学模型、统计思想等;渗透数学思想方法的教学中证明:有目的、有计划的渗透数学思想方法可以让不同程度的学生从中受益,从而提高数学学习的效率及教学质量。
关键词:数学思想方法 渗透
小学数学教学不仅要传授学生知识,而且也要在教学中渗透数学思想方法。数学思想方法是数学知识不可分割的有机组成部分,小学数学教材中,蕴含了许多数学思想和方法,如符号化思想、数学模型思想、统计思想、化归思想、组合思想、变换思想、对应思想、极限思想、集合思想、转化建模的思想以及猜想、验证的方法和反证法等。学生对数学的学习不单纯是知识的获得和反复的操练,贯穿始终的还有数学思想方法。如果说数学教材中的基础知识和基本技能是一条明线的话,那么蕴含在教材中的数学思想方法就是一条暗线。教师要注意数学思想方法的渗透,抓住教学内容中的有利因素,有意识地加以引导,有目的、有选择、适时地进行渗透,使学生在潜移默化中掌握数学思想方法。
一、 教学中渗透数学思想方法是必然趋势。
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。小学数学教学中渗透数学思想方法的必要性主要有以下四点:
1、创新人才培养的需要。当今世界,科技发展突飞猛进,知识经济初见端倪,国际竞争日趋激烈,人的素质的提高和“人才高地”的构筑,越来越成为经济增长和社会发展的决定性因素。素质教育的重要性被凸现出来。数学教学也应实施素质教育,我国《全日制义务教育数学课程标准》明确指出:义务教育阶段的数学课程致力于学生体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和应用数学的信心;学会运用数学的思维方式去观察分析现实社会,去解决日常生活中和其他学科学习中的问题;形成勇于探索,勇于创新的科学精神;获得对未来社会生活和进一步发展所必需的重要数学知识,(包括数学知识,数学活动经验)以及基本的思想方法和必要的应用技能。创新人才需要高素质的人,高素质的人必须具备优秀的思维品质,而数学是思维的科学,思维能力是数学能力的核心。在数学教学中渗透数学思想方法是培养学生的创新意识最根本的途径。
2、数学教学改革的需要。根据有关调查发现,在数学教学中数学思想方法的教学不受重视。相当一部份教师根本没有把数学思想方法纳入教学目标。而加强数学思想方法的教学是进一步提高数学教学质量的需要。从数学教材体系看,整个小学数学教材中贯穿着两条主线,一是写进教材的最基础的数学知识,它是明线,一贯很受重视,必须切实保证学生学好。另一条是数学能力培养和数学思想方法的渗透,这是条暗线,较少或没有直接写进教材,但对小学生的成长却十分重要,也越来越引起人们的重视。在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终。重视数学思想方法的教学有利于教师从整体上把握数学教学目的,将数学的本质、知识形成的过程,解决问题的过程展示给学生,教学达到事半功倍。现在教学中存在重知识结论的教学,轻知识发生过程的教学;重知识达标评价,轻数学思想形成的评价;重学生眼前的分数利益,轻学生的长远素质发展等的现状。一些教师对数学思想方法的理解不深透,数学思想方法的渗透教学在课堂教学中短时期难以见成效。因此,在小学数学教学中,数学思想方法的教学难以规范有序的实施,成为被人遗忘、冷落的“角落”。数学教学若是坚持 “数学知识的教学”则远远不能培养数学的思维能力,而数学思维能力的培养需要数学思想方法的教学与渗透。基于以上现状,数学思想方法的教学在小学数学教学法中有必要进行实践与探索。
3、 在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性 的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是 培养学生分析问题和解决问题能力的重要途径。
4、小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强 学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好 比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横 两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基 本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
二、现行小学数学教材中主要数学思想方法的知识分布及其教学策略。
现行的小学数学无论是新教材还是旧教材从教材内容看,小学数学解题常用到数学模型、符号化思想、统计思想、化合思想、组合思想等。这些数学思想方法对帮助学生解决实际问题有着重要的作用。
1、 符号化思想。
英国着名哲学家、数学家罗素说过:“什么是数学?数学就是符号加逻辑”。小学教材中大致出现如下几类符号:(1)个体符号:表示数的符号,如:1、2、3、4…,0;a,b,c,…,π,χ以及表示小数、分数、百分数的符号。(2)数的运算符号:+,-,×(·),÷(/,:)。(3)关系符号:=,≈,>,<,≠等。(4)结合符号:(),〔 〕等以及表示角度的计量单位符号和表示竖式运算的分隔符号等。
由于数学符号的抽象性和小学生思维习惯的具体性之间存在着矛盾,又由于符号常常是概念的代表。所以教师在教学中渗透符号化思想就要注意:①让学生正确理解与使用数学符号。在实际的教学中,学生在使用这些数学符号时往往会出现如下的错误。例如:在教学低年级文字题“90比60 多几?”小学生由于对加法的意义的不理解,往往看“多”就用“+”,看“少”就用“-”。误列式为“90+60”。又例高年级文字题“一个数的6倍少24是180,求这个数是多少?”学生也往往看见“倍”用“×”,看“少”就用“-”,误列式为“(180-24)×6”。象这样的例子,教师在教学中注意让学生理解符号的内涵,正确理解使用符号所表示的概念。如果只从解法上予以纠正而不从符号化思想上予以渗透,将事倍功半,学生今后还会出现类似的错误。②掌握日常语言与符号语言间的转化。数学教学实际上是数学语言的教学。在教学活动中,要帮助学生初步学会简单的数学符号语言和日常语言的转化,即将日常语言叙述的数量关系或空间形式转化为数学符号语言。反之,也能将符号语言转化为问题,看懂抽象的符号所反映的数量关系或空间形式。例如:
小营村有棉田75公顷, 已知一个数的60%是 解:设全村耕地面积是
是全村耕地面积的60% 全分析转化75,求这个数是多少? χ公顷。
村耕地面积是多少公顷? X 60%=75
日常语言 数学语言 符号语言
因此,教师在教学当中要引导学生用数学语言描述生活语言,而不要机械的把数学符号灌输给学生,从而培养学生抽象思维能力。③在填数中渗透变元思想。小学数学教科书在不同阶段,对变元思想有不同水平、不同形式的渗透,以便让学生逐步了解变元思想。例如:3.□7>3.27,45.16<45.1□,学生在方框里填上一个数很容易,但教师要明白,若将方框里填上χ就变成一元一次不等式。因此,教师应引导学生继续思考:方框内最多可以填几个数?这种思考能是学生初步了解变元思想。④在字母表示数中渗透符号化思想。在小学教材中,用字母表示数有表示运算定律,表示数量关系,面积体积公式等。例如:加法交换律:a+b=b+a,路程=速度×时间用字母表示s=vt,等。教师在教学用字母表示数时要循序渐进,从学生的生活中、原有的认知结构结合起来自然的建构。
2、 数学模型方法。
着名数学家华罗庚先生说:“数无形时不直观,形无数时难入微”,这句话形象简练地指出了形和数的互相依赖、相互制约的辩证关系。数学模型是对客观事物的空间形式和数量关系的一个近似的反映。数学模型可做广义和狭义理解。按广义的理解,凡一切数学概念、数学公式、数学理论体系、方程式和算法系统都可以叫做数学模型。数学模型可以分为三类:①概念型数学模型,如实数、函数、集合、向量等。②方法型模型,如各种方程、公式等。③结构型模型,如群、环、域、向量空间等。数学模型在解题中的基本构造如下:
实际问题
数学抽象
数学模型 还原说明
演算 推理
数学模型的解
由于数学模型的直观性能将概念的本质属性变得明显,学生掌握较容易,因此,在小学数学教学中恰当地渗透数学模型方法,有助于小学生掌握数学知识,增强解题能力,提高数学教学的效果。小学数学教学一般运用的是概念型数学模型和方法型的数学模型。
① 集合模型在教学中的渗透。三角形按角分类可以用下图表示:
三角形
直角三角形
锐角三角形钝角三角形
学生弄懂集合图的含义后,在今后的学习中会尝试用集合图来表示概念间的联系。如:
平行四边形
长方形
正方形
在应用题的解题中,教师也可以启发学生用集合图来帮助分析题意探寻解题方法。如:工程队计划修一条长250千米公路,第一天修了全长的20%,第二天修了全长的40%,剩下的第三天修完,第三天修了多少千米?
250千米(“1”)
第一天第二天 第三天
20% 40% ?
从图中可以看出,第三天修的路长是全长250千米的(1-20%-40%) ,此题迎刃而解:250×(1-20%-40%)=100(千米)。
②方程模型在教学中的渗透。列方程解应用题的关键是用数学模型来模拟数量关系,即根据条件用两种不同的方式表示同一量,列出已知数与未知量之间的关系式。在小学中高年级已逐步用方程来解答文字题与应用题。例如:一个工厂原来每天制造机器零件1800个,比现在少10%,现在每天制造机器零件多少个?
解:设现在每天制造机器零件χ个。
现在每天制造 原来每天制造 原来每天制造机
机器零件 — 比现在少10%, = 器零件1800个
χ 10%χ 1800
于是列出方程:χ-10%χ=1800。也就是原来每天制造机器零件1800个相当于现在的(1-10%)。还可列出方程χ·(1-10%)=1800。
③几何模型在教学中的渗透。解应用题时,若能将难题的数学问题化为与之相关的图形,通过作图来构造几何模型,再根据图形的性质和特点解题,将会使问题的解答简易直观。例如:一台压路机轮宽6米,如果它一分钟行驶200米,照这样计算,一小时它压过路面是多少平方米?
200米
轮宽6米
从图中可以看出,这题实际就是求60个长200米、宽6米的长方形的面积。6×200×60=32000(平方米)。
④公式模型在教学中的渗透。数学公式既是反映客观世界数学关系的符号,又是现实世界抽象出来的数学模型,因为它摒弃了各个事物的个别属性,因此它更具有典型的意义。例如:工作总量=工作效率×工作时间,路程=速度×时间,总产量=单产量×公顷数等。利用这些抽象出来的数学模型可以解决许多相关的题。例题“一件工作,甲单独做要6小时,乙单独做要用4小时,甲做完1/3后,两人合作,还要几小时做完?”解决这道题将工作总量看作单位“1”,甲的工作效率看作1/6,乙的效率看作1/4,根据工作总量=工作效率×工作时间这个公式模型,列式得出:(1-1/3)÷(1/6+1/4)=1.6(小时)。
3、统计思想
统计的基本思想是:从局部观测资料的统计特征来推断整个系统的状态,或判断某一论断以多大的概率来保证其正确性,或者算出发生错误判断的概率。统计方法是由“局部到整体”、“由特殊到一般”的科学方法。小学数学中统计思想体现在:简单的数据整理和求平均数,简单的统计表和统计图。学生在会整理、制表、作图的同时要能从数据、图表中发现一些相关的问题,得出一些结论。在教材的编排上,在低中年级让学生领悟略朴素的统计思想后,在中年级学习数据整理的方法上到高年级进一步按数据的大小分组统计的整理方法和复式条形统计图以及折线统计图。除了按课本的安排教学外,教师也可在平时的教学中有机的渗透统计的思想。例如:在课前布置学生收集有关的资料。如《亿以内数的读写》一课,可让学生收集生活中有关亿以内数的相关数据,通过课前收集、课上的交流与整理不仅学生学会了读写这些数,而且在接受国情教育中体会了统计的思想。在有些课上也可当堂收集资料统计数据,为教学内容服务。如《三步应用题》一课,课上调查同学们的定报情况,包括人数,单价,数量,报刊的种类等。通过图表等形式,提出问题,围绕着三步应用题的解题思路进行教学。这样的教学,教师有意识的渗透统计思想,学生学到生活中的数学,学习的有效性大大提高。当然,在小学数学中统计思想的渗透只能是初步的,仅仅涉及到整理样本数据的一些最简单的方法。至于总体推测,只是引导学生作些初步的想象和估算,以逐步接受统计思想的熏陶,同时也为今后的进一步学习打下基础。
4、.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。
例1 、狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 1/2 米,黄鼠狼每次可向前跳2 3/4米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 3/8米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每 次所跳距离4 1/2(或2 3/4)米的整倍数,又是陷阱间隔12 3/8米的整倍数,也就是4 1/2和12 3/8的“ 最小公倍数”(或2 3/4和12 3/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小 公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
5、.组合思想
组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
例4 在下面的乘法算式中,相同的汉字代表相同的数字, 不同的汉字代表不同的数字,求这个算式。
从小爱数学
× 4
──────
学数爱小从
分析:由于五位数乘以4的积还是五位数, 所以被乘数的首位数字“从”只能是1或2,但如果“从”=1, “学”×4的积的个位应是1,“学”无解。所以“从”=2。
在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于 8,所以“学”=8。
在千位上,由于“小”×4不能再向万位进位,所以“小”=1 或0。若“小”=0,则十位上“数”×4+ 3(进位)的个位是0,这不可能,所以“小”=1。
在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。
在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。
故欲求乘法算式为
2 1 9 7 8
× 4
──────
8 7 9 1 2
上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。
6、在实际的教学中由于执教者对教材的理解不同,对同一教学内容会用不同的思想方法进行教学。有的教学内容往往通过几种数学思想方法去分析与解答。因此,教师在教学中要充分理解教材的教育功能,挖掘其隐藏的数学思想方法,在导出结论、寻找方法、揭示规律的过程中,使学生掌握其来龙去脉,培养学生自觉运用数学思想方法的意识。除以上例举的五种思想方法外,变换思想、对应思想、极限思想、集合思想、联想思想、、归纳猜想方法、演绎法转化建模的思想以及猜想、验证的方法和反证法等在小学数学教学中也时常应用,教师也应注意有意识地在教学中渗透。
三、在日常教学中渗透数学思想方法。
新一轮基础教育课程改革制定的新《课程标准》特别关注学生在知识与技能、过程与方法、情感态度与价值观这三个维度。《课程标准》中提到:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学到有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。这就要求我们教师在教学中不能只关注知识与技能,更要关注技能与方法。
1、 渗透数学思想方法教学的原则
(1)过程性原则。
在教学中渗透数学思想方法时,不直接点明所应用的数学思想方法,而是通过精心设计的教学过程,有意识的引导学生潜移默化地领会蕴含其中的数学思想和方法。例如:在教学加法交换律时,通过一个猜球的小游戏,让学生用日常生活语言叙述游戏中:“变与不变的道理”。然后,进一步让学生用图形或数学符号表示,进而抽象出数学模型A+B=B+A。
(2)反复性原则。
数学方法属于逻辑思维的范畴,学生对它的领会和掌握具有一个“从个别到一般,从具体到抽象,从感性到理性,从低级到高级”的认知过程。那么,教师在教学中应作到渗透与反复相结合。例如:在教学运算定律的应用、典型应用题及解决一些实际问题时,反复渗透集合模型、方程模型、集合模型、公式模型等各种数学模型方法。
(3)系统性原则。
数学思想方法的渗透要由浅入深,不能随意性太强,对一种数学思想方法挖掘到什么程度,学生能理解到什么程度,教师要心中有数。所以,教师在制定教学计划时,要充分了解这一册教材中可以结合哪些内容进行什么数学思想方法的渗透,再结合后续的教学整理出数学思想方法教学的系统。
(3)明确性原则。
数学思想方法如果长期、反复、不明确的渗透,学生就不会有意识的领会与使用。所以,在一个教学阶段,教师就要有意识的总结我们解题时所应用到的思想方法,使得学生对数学思想方法的规律、运用方法适度明确化,利于今后的学习。
2、 渗透数学思想方法的有效途径
(1) 在知识的发生过程中,适时渗透数学思想方法。
在教学中教师不要简单的给出定义,不要过早的下结论,不要死板的找关联,这利于培养学生的分析、观察、比较、抽象、概括的逻辑思维加工的能力。例如:在教学“小数的性质”一课,教师不是简单地告诉学生什么是小数的性质,而是通过比较0.10与0.100的大小,由学生自己揭示小数的性质。学生分小组讨论0.10与0.100相等的理由有五、六种之多。有的利用数形结合的方法来验证;有的用实际测量的方法验证;有的用商不变的性质类比验证;有的用反证法验证等等。
(2) 通过小结、复习提炼概括数学思想方法。
在每一个单元整理与复习时,除了让学生整理数学知识点,还要让学生回忆解题是所应用到的一些典型的思想方法。从而让学生运用这些方法来解决实际问题。
(3) 在教学中注意多种数学思想方法的综合运用。
在解决实际问题的过程中,往往需要多种方法同时运用才能奏效。那么,在教学时注意引导学生综合运用的能力。
(4) 注意总结与评价。
在进行一段时间的训练后,结合学生的作业、测试,教师要及时的给学生总结与评价。评价时不要简单的对结果做出是非的评价,而要通过分析学生的解题思路及运用到的一些数学思想方法给予肯定。以此激励学生的创新能力,激发他的学习动力。
已经有人通过实验研究一学期的教学,在研究过程中不断的改进与总结,初步看见一些成效。从学生的成绩可以看出,在教学中有目的、有计划、有序列的进行数学思想方法的渗透,学生能够接受,可以让不同程度的学生受益,锻炼他们的思维能力,增强解决问题的能力,从而提高教学质量。
四、结论
在小学数学中渗透数学思想方法随着新一轮课程改革的进行已放在重要而显性的地位。每一个教师都要在实践中积极地改革与尝试。通过有效的实践与研究,在小学数学中渗透数学思想方法是可行的,学生是完全可以接受的,并且通过有目的、有计划、有序列的渗透,学生的思维能力得以增强,不同的学生都得到不同的收获,他们得到的不仅是“鱼”,还有“渔”,对学生的长远发展有着积极的意义及深远的影响。教师在这一研究中,提高了自身的数学修养,提升了教学理念,真正以“人”为本提高了课堂效益与教学质量。
⑧ 如何培养小学生的数学建模思想
生活中多用物体思想建模,多联想,多动脑。让孩子觉得数学建模是件有趣而且很了不起的事
⑨ 小学数学建模论文
数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力
摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。