导航:首页 > 数字科学 > 题题清数学七上答案是什么

题题清数学七上答案是什么

发布时间:2022-08-11 22:11:18

⑴ 七年级上册数学代数式计算题加答案

一、选择题
1. (2011盐城,4,3分)已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )
A.﹣1 B.1 C.﹣5 D.5
考点:代数式求值.
专题:计算题.
分析:将所求代数式前面两项提公因式2,再将a﹣b=1整体代入即可.
解答:解:∵a﹣b=1,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×1﹣3=﹣1.故选A.
点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.
2. (2011•台湾8,4分)若(7x﹣a)2=49x2﹣bx+9,则|a+b|之值为何()
A、18B、24 C、39D、45
考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x2﹣14ax+a2=49x2﹣bx+9,再根据各未知数的系数对应相等列出关于a、b的方程组,求出a、b的值代入即可.
解答:解:∵(7x﹣a)2=49x2﹣bx+9,
∴49x2﹣14ax+a2=49x2﹣bx+9,
∴,
解得,
当a=3,b=42时,|a+b|=|3+42|=45;
当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;
故选D.
点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.
3. (2011•湘西州)当a=3,b=2时,a2+2ab+b2的值是()
A、5B、13 C、21D、25
考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.
解答:解:a2+2ab+b2=(a+b)2,
当a=3,b=2时,
原式=(3+2)2=25,
故选:D.
点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.
4. (2011海南,5,3分)“比a的2倍大1的数”用代数式表示是()
A.2(a+1)B.2(a-1)C.2a+1D.2a-1
考点:列代数式。
分析:由题意按照描述列式子为2a+1,从选项中对比求解.
解答:解:由题意按照描述列下式子:2a+1
故选C.
点评:解决问题的关键是读懂题意,找到所求的量的等量关系.
5. (2011黑龙江牡丹江,18,3分)抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()
A、﹣2B、2C、15D、﹣15
考点:二次函数图象上点的坐标特征;代数式求值。
分析:根据图象上点的性质,将(2,4)代入得出4a+2b=7,即可得出答案.
解答:解:∵y=ax2+bx﹣3过点(2,4),
∴4=4a+2b﹣3,
∴4a+2b=7,
∴8a+4b+1=2×7+1=15,
故选:C.
点评:此题主要考查了二次函数图象上点的坐标特征以及代数式求值,根据题意得出4a+2b=7是解决问题的关键.
6. (2011湖北十堰,7,3分)已知x-2y=-2,则3-x+2y的值是( )
A.0 B.1 C.3 D.5
考点:代数式求值.
专题:整体思想.
分析:根据题意可利用“整体代入法”把x﹣2y=﹣2代入代数式,直接求出代数式的值.
解答:解:∵x﹣2y=﹣2,∴3﹣x+2y=3﹣(x﹣2y)=3﹣(﹣2)=5,
故选D.
点评:本题既考查了整体的数学思想,同时还隐含了正确运算的能力,比较简单.
7.(2011广东珠海,2,3分)化简(a3)2的结果是 ( )
A. a6 B.a5 C.a9 D.2a3
考点:幂的乘方
专题:整式
分析:幂的乘方,底数不变,指数相乘.(a3)2=a6.
解答:A
点评:幂运算中同底数幂数相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.积的乘方,等于积中的每个因式分别乘方.幂的乘方和积的乘方,以及同底数相乘,这几个运算法则容易混淆.
8.(2011年广西桂林,15,3分)当时,代数式的值是 .
考点:代数式求值.
分析:由已知直接代入,即把代数式中的x用-2代替,计算求值.
答案:解:把x=-2代入 得:
=- .
故答案为:- .
点评:此题考查的是代数式求值,关键是代入式注意不要漏掉符号.
9.(2011广西来宾,7,3分)下列计算正确的是( )
A B C. D.
考点:同底数幂的除法;幂的乘方与积的乘方;完全平方公式。
分析:同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
解答:解:A项为完全平方公式,缺一次项,故本选项错误,
B项为幂的乘方,底数不变指数相乘,故本选项错误,
C项为幂的乘方,底数不变指数相乘,故本选项错误,
D项为同底数幂的除法,底数不变指数相减,故本选项正确,
故选择D.
点评:本题主要考察同底数幂的除法;同底数幂的乘法;幂的乘方;完全平方公式,关键在于熟练运用以上运算法则.
10.(2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()
A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃
考点:列代数式。
专题:计算题。
分析:由已知可知,最高气温﹣最低气温=温差,从而求出最低气温.
解答:解:设最低气温为x℃,则:
t﹣x=11,
x=t﹣11.
故选C.
点评:此题考查的知识点是列代数式,此题要明确温差就是最高气温减去最低气温.

二、填空题
1. (2011盐城,10,3分)某服装原价为a元,降价10%后的价格为 元.
考点:列代数式.
专题:推理填空题.
分析:由已知可知,降价10%后的价格为原价的(1﹣10%),即(1﹣10%)a元.
解答:解:降价10%后的价格为:(1﹣10%)a元.故答案为:(1﹣10%)a.
点评:此题考查的知识点是列代数式,关键是确定降价后价格与原价格的关系.
2. (2011•湘西州)若一个正方形的边长为a,则这个正方形的周长是4a.
考点:列代数式。
分析:正方形的边长a,正方形的周长为:4×正方形的边长.
解答:解:正方形的边长:4a.
故答案为:4a.
点评:本题考查列代数式,根据正方形的周长公式可求解.
3. (2011•广东汕头)按下面程序计算:输入x=3,则输出的答案是12.

考点:代数式求值。
专题:图表型。
分析:根据输入程序,列出代数式,再代入x的值输入计算即可.
解答:解:根据题意得:
(x3﹣x)÷2
∵x=3,
∴原式=(27﹣3)÷2=24÷2=12.
故答案为:12.
点评:本题考查了代数式求值,解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.
4. (2011•柳州)单项式3x2y3的系数是3.
考点:单项式。
专题:计算题。
分析:把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数.
解答:解:3x2y3=3•x2y3,其中数字因式为3,
则单项式的系数为3.
故答案为:3.
点评:确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.找出单项式的系数的规律也是解决此类问题的关键.
5. (2011,四川乐山,12,3分)体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为 .
考点:代数式。
专题:应用题。
分析:本题需先根据买一个足球a元,一个篮球b元的条件,表示出3a和2b的意义,最后得出正确答案即可.
解答:解:∵买一个足球a元,一个篮球b元.
∴3a表示委员买了3个足球
2b表示买了2个篮球
∴代数式500﹣3a﹣2b:表示委员买了3个足球、2个篮球,剩余的经费.
故答案为:体育委员买了3个足球、2个篮球,剩余的经费
点评:本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.
6. (2011浙江金华,11,4分)“x与y的差”用代数式可以表示为 .
考点:列代数式。
专题:和差倍关系问题。
分析:用减号连接x与y即可.
解答:解:由题意得x为被减数,y为减数,
∴可得代数式x﹣y.
故答案为:x﹣y.
点评:考查列代数式;根据关键词得到运算关系是解决本题的关键.
7. (2011浙江丽水,11,4分)“x与y的差”用代数式可以表示为x﹣y.
考点:列代数式。
专题:和差倍关系问题。
分析:用减号连接x与y即可.
解答:解:由题意得x为被减数,y为减数,
∴可得代数式x﹣y.
故答案为:x﹣y.
点评:考查列代数式;根据关键词得到运算关系是解决本题的关键.
8. 汛期来临前,滨海区决定实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了
天(用含a的代数式表示).
【考点】列代数式.
【专题】工程问题.
【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.
【解答】解:由已知得:原计划用的天数为,,实际用的天数为,,
则完成整个任务的实际时间比原计划时间少用的天数为, .
故答案为:.
【点评】此题考查的知识点是列代数式,解题的关键是根据题意先列出原计划用的天数和实际用的天数.
9.(2011•株洲10,3分)当x=10,y=9时,代数式x2﹣y2的值是19.
考点:代数式求值;平方差公式。
专题:计算题。
分析:本题需先对要求的代数式进行变形,再把x=10,y=9代入即可求出结果.
解答:解:x2﹣y2
=(x+y)(x﹣y)
当x=10,y=9时
原式=(10+9)×(10﹣9)
=19
故答案为19.
点评:本题主要考查了如何求代数式的值,在解题时要能对代数式进行变形是本题的关键.
10.(2011年湖南省湘潭市,16,3分)规定一种新的运算:,则1⊗2= .
考点:代数式求值.
专题:新定义.
分析:把a=1,b=2代入式子计算即可.
解答:解:∵,
∴1⊗2=1+ =.故答案为:.
点评:本题是一个新定义的题目,考查了代数式求值,是基础知识比较简单.
11.(2011吉林长春,10,3分)有a名男生和b名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块.这a名男生和b名女生一共搬了(40a+30b)块砖(用含a.b的代数式表示).
考点:列代数式.
分析:首先表示出男生共搬运的砖数,再表示出女生共搬运的砖数,然后相加即可.
解答:解:男生每人搬了40块,共有a名男生,∴男生共搬运的砖数是:40a,女生每人搬了30块,共有b名女生,∴女生共搬运的砖数是:30b,∴男女生共搬运的砖数是:40a+30b.故答案为:40a+30b.
点评:此题主要考查了根据实际问题列代数式,关键是弄懂题意,表示出男女生各搬运的砖数.
12. (2011广东湛江,17,4分)多项式2x2-3x+5是__________.
考点:多项式.
专题:计算题.
分析:根据单项式的系数和次数的定义,多项式的定义求解.
解答:解:由题意可知,多项式2x2-3x+5是 二次 三项式.
故答案为:二,三.
点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:
多项式中的每个单项式叫做多项式的项;
多项式中不含字母的项叫常数项;
多项式里次数最高项的次数,叫做这个多项式的次数.
13.(2011广西百色,16,3分)如图,是一个简单的数值运算程序,当输入x的值为﹣2时,则输出的结果为_________.

考点:代数式求值.
专题:图表型.
分析:根据运算程序可得,若输入的是x,则输出的是﹣x﹣2011,把x的值代入可求输出数的值.
解答:解:根据运算程序可知,若输入的是x,则输出的是﹣x﹣2011,
∴当x=﹣2时,输出的数值是﹣2×(﹣1)﹣2011=﹣2009.
故答案为:﹣2009.
点评:考查了学生代数式求值问题及读图理解的能力,以及根据运算程序求输出数值的表达式,简单的读图知信息能力.
14.(2011广西来宾,16,3分)千克浓度为﹪的某溶液中溶剂的质量为 千克.
考点:列代数式。
专题:计算题。
分析:此题要明确溶剂的质量等于溶液的质量减去溶质的质量,而溶质的质量等于溶液的质量乘以浓度,据此列代数式.
解答:解:根据题意得溶剂的质量为:
m﹣ma%=m(1﹣a%)(千克)
故答案为:m(1﹣a%).
点评:此题考查的知识点是列代数式,解题的关键是要明确溶剂的质量等于溶液的质量乘以浓度.

这位同学这是我找到的练习,希望可以帮到你哦,希望采纳!谢谢!祝你学习进步!

⑵ 求25道七年级上册数学应用题 带答案的

1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.
此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.
根据题意得:0.8x-100=20,
解得:x=150.
答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.

2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10( 2960-x)=18( 2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时,
29分= 2960小时,25分= 2560,
则依据题意得:10( 2960-x)=18( 2560-x),
解得:x= 13,
则甲地到乙地的路程是15× 13+10×( 2960-13)=6.5km,
答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程

3.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.
依题意,得5.8-x=3x+0.6,
解得:x=1.3,
∴5.8-x=5.8-1.3=4.5.
答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.

4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为 x2,第一次的本息和为(100+100×x)元.
由题意,得(100+100×x-50)× x2+50+100x=63,
解得x=0.1或x= -135(舍去).
答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件

5.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)
依题意得x+(x+7)+x+(x+7)+2=100(3分)
解得x=21,(5分)
所以x+7=21+7=28;21+28+2=51
答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.

6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.
①当0≤x≤300时,顾客在两家超市购物都一样.
②当300<x≤500时,顾客在金帝超市购物能得更大优惠.
当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.
③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:
④当x=900时,顾客在两家超市购物都一样.
⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.

7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,
由题可得:20+0.85x=x-10,
解得:x=200.
答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解

8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.考点:一元一次方程的应用.专题:行程问题.分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一
解:设提速前速度为每小时x千米,则需时间为 240x小时,
依题意得:(x+10)( 240x- 2060)=240,
解得:x1=-90(舍去),x2=80,
因为80<100,所以能实现提速目标.
解法二
解:设提提速后行驶为x千米/时,根据题意,得 240x-10- 240x= 2060去分母.
整理得x2-10x-7200=0.
解之得:x1=90,x2=-80
经检验,x1=90,x2=-80都是原方程的根.
但速度为负数不合题意,所以只取x=90.
由于x=90<100.所以能实现提速目标.

9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.
由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,
解得:x=1.3,y=2.9.
故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.

10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,
依题意得:(4x-50)+x+2x=664.
解得:x=102.
答:严重缺水城市有102座.

11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).
(1)求目前广州市在校的小学生人数和初中生人数;
(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那么小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;
(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那么小学生人数为(2x+14)万,
则x+2x+14=128
解得x=38
答:初中生人数为38万人,小学生人数为90万人.
(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.
答:广州市政府要为此拨款8.3亿元.

12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,
依题意得:50x(1-0.8)=6,
解得:x=0.6.
答:故每支铅笔的原价是0.6元.

13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.
考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),
由题意知:0.2x+0.1(20-x)=22.5-20,
解得:x=5
∴A站去年客流量为:1.2×5=6(万人)
∴B站人数为:22.5-6=16.5(万人)
答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.

14.阅读下面对话:
小红妈:“售货员,请帮我买些梨.”
售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”
小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”
对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.
则有: 30x=301.5x+2.5,
解得:x=4,
1.5x=6.
答:梨和苹果的单价分别为4元/千克和6元/千克.

15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,
由题可得:2x+(16-x)×1=28
解得:x=12,
答:球队赢了12场,输了4场.

16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.
(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.
第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%
由题意得:x=x•(1-20%)+(400-x)•30%
解之得:x=240
(2)∵第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%= x2+120,
∴第三次参加球类活动的学生为:( x2+120)•(1-20%)+[400-( x2+120)]•30%= x4+180,
∴由 x4+180≥200得x≥80,
又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数.
答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.

17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.
(1)参加本次社会调查的学生共多少名?
(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;
(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4( x+48+3)=x,
解之得:x=28
答:参加本次社会调查的学生共28人.
(2)其租车方案为
①第一种车4辆,第二种车0辆;
②第一种车3辆,第二种车1辆;
③第一种车2辆,第二种车3辆;
④第一种车1辆,第二种车5辆;
⑤第一张车0辆,第二种车7辆.
比较后知:租第一种车3辆,第二种车1辆时费用最少,
其费用为1100元.

18.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.
由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600,
解得:x=50.
故这个数量是50个.

19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,
列方程得:x=4(452-x)-8,
解得:x=360.
当x=360时,452-x=92.

20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?
(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;
(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.
600x=400(1+5%),
可求得x=0.7.
(2)设该厂六,七两月产量平均增长的百分率为x.
5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:
(1+x)2= 648450=1.44,
1+x=1.2,
x=20%.

21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,
依题意得:70%•(x+2)-x=0.2
解得:x=4
答:该文具每件的进货价为4元.
近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?考点:一元一次方程的应用.专题:增长率问题.分析:应先根据96年的台数+4年一共增加的台数=2000年的台数,求得每年的增长量,进而让11600加3年增加的台数即为2003年宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台,
则:1040+(2000-1996)x=11600,
解得x=2640,
∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).
答:2003年宜宾市中小学装备计算机的总台数是19520台.

23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得
[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),
解这个方程得x=10.4.
答:该产品每件的成本价应降低10.4元.

24.为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?
某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;
(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,
则有:x+6=2(x-6),
∴x=18;
所以这批足球共有18个;
(2)设白块有y块,
则3y=5×12,
∴y=20,
所以白块有20块.

25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,
依题意得:3x=7(170-x),
解得:x=119,
170-x=51.
答:该年级的男生有119人,那么女生有51人.

望采纳谢谢。

⑶ 七年级上数学应用题50道(有答案)

2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.

大的分数为______.

4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.

5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.

7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.

8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.

10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.

二、解答题:

1.求在8点几分时,时针与分针重合在一起?

2.如图中数字排列:

问:第20行第7个是多少?

3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?

4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?

以下答案为网友提供,仅供参考:

一、填空题:

1.(B)

取倒数进行比较.

2.(16)

把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.

5.(421)

由A+B+C=7,A、B、C都是自然数,且A>B>C,所以A=4,B=2,C=1.即三位数为421.

6.(400)

7.(72)

没打洞前正方体表面积共6×3×3=54,打洞后面积减少6又增加6×4(洞的表面积),即所得形体的表面积是54-6+24=72.

8.(9块)45%

9.(3994)

10.27角6分

不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).

二、解答题:

考虑8点时,分针落后时针40个格(每分为一格),而时针速度为每分

2.(368)

由分析知第n行有2n-1个数,所以前19行共有1+3+5+…+(2×19-1)
3.(1344)

设洗衣机x元,则每月应得报酬为:

4.(16,10,7)
列表用逆推法求原来兄弟三人的苹果数:

所以老大年龄为13+3=16(岁),老二年龄为7+3=10(岁),老三年龄为4+3=7(岁).

给你二个网站:
www.aoshu.cn
http://e.86516.com/kls

⑷ 七年级上数学应用题及答案70道

1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。

9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。

根据题意得:【1-15%】X+【1+25%】【2300-X】=2300
解之得:931
答:下半年生产931台。
10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m

11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
慢马每天走150里,快马每天走240里,慢马先走十二天也就说明慢马与快马出发前的距离为150×12=1800里,然后快马出发,快马每天走240里,但是当快马追赶慢马的时候,慢马也在行走所以用快马的速度减去慢马的速度240-150=90里,这就是快马一天的追赶速度,快马与慢马之间相差1800里,而快马一天追赶90里,所以1800÷90=20天就是慢马追上快马的天数

12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。

【解】设每箱有x个产品

5台A型机器装:8x+4
7台B型机器装:11x+1

因为(8x+4)/5=(11x+1)/7+1

所以:x=12

所以每箱有12个产品

13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.
1分钟=60秒
设火车长度为x米,则根据题意可以得到
火车的速度为(1000+x)/60
因此[(1000+x)/60]*40=1000-2x
解得x=125
(1000+x)/60=(1000+125)/60=1125/60=18.75
所以火车速度为18.75米每秒,长度为125米

16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数

2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母

17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?

由已知,糖相当于一个公比为2的等比数列An,并且有An=2^(N-1)
要求从几格开始的连续三个中共有448粒,设这一格糖数为An,由等比数列求和公式
[An(1-2^3)]/(1-2)=448,解得An=64=2^(N-1),得N=7
故从第7格开始的连续三个中共有448粒

18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?

解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?

设懂汉语的X人,则英语的为3X+3人
懂英语的,加懂汉语的肯定大于等于30-10
3X+3+X >= 30-10 (大于等于)
懂英语的肯定不超过30-10,即小于等于
3X+3 <= 30-10
17/4 <= X <=17/3
得X=5人 (X必须得是整数)
则3X+3=18人
即懂英又懂汉的则为 18+5-20=3人

20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

设第一套的成本是X
X*[1+25%]=135
X=108

盈利:135-108=27元

设第二套的成本是Y

Y[1-25%]=135
Y=180

亏损:180-135=45元

所以,总的是亏了,亏:45-27=18元

21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
设:需要X只玻璃杯
3*3*3.14*10*X = 5*5*3.14*35
X = 5*5*35/3*3*10
X = 9.7
答:需要10只玻璃杯

22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?

设总工作量是x,师傅的效率是x/4,徒弟的效率是x/6,总效率是5x/12,徒弟一天干了x/6剩下5x/6,那么他们共同完成的时间是5x/6除以5x/12得2天,说明总共用了3 天每天是150元师傅和徒弟的效率比试3:2那么共同2天的钱应该3:2分师傅得得钱是180元,徒弟的钱是120+150=270元

23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?

解:设四月份节约x千克。
x+(1+20%)x+(1+20%)x+25%*(1+20%)x=3700
x+1.2x+1.2x+0.25*1.2x=3700
3.7x=3700
x=1000
6月份=四月份*(1+20%)(1+25%)
那么就等于:
1000*(1+20%)*(1+25%)=3700(千克)
经检验,符合题意。
答:该食堂六月份节约煤3700千克。

24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?

90/分 是每分钟90米吗?下面就是以90米每分的速度计算的 90米/分=1.5米/秒
从排头到排尾的时间为t,
1.5t+2X1.5t=450 t=100秒
在从排尾到排头的时间为t1
1.5t+450=2 X 1.5t t=300秒
所以总共需要400秒

26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?

解 设原价为X元,则现价为(X-0.3)元
36除X=36除(X-0.3)-4
这样解麻烦死了,一般楼上的解不出来才让你解
我的方法:解 设原价为X元,则现价为(X-0.3)元
36/X乘0.3=4乘(X-0.3)
10.8=4X的平方-1.2X
2.7=X(X-0.3)
X=1.8

27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?

1、设:两人x分钟后相遇
(360-240)x=400
120x=400
x=400/120
x=10/3
两人一共跑了(360+240)*10/3/400=5圈

2、
应该是:“两人同时同地反向跑”吧

设:两人x分钟后相遇
(360+240)x=400
600x=400
x=400/600
x=2/3
2/3分钟=40秒

28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?

可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时

29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)

设需要t秒,设那段时间小车行走的距离为s1=30.56t(110km/h=30.56m/s) 卡车 s2=27.78t(100km/h=27.78m/s) 而小车要超过卡车需要比卡车多走12+4*2=20米。即s1=s2+20代入后得t=7.2秒。

30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)

=(340+20)*4/2-20*4=640(米)

式中20是汽车的速度 20m/s=72km/h

声波的速度为340m/s
车速为72km/h=20m/s
声波4秒走340*4=1360m
车4秒走 20*4=80m
设听到声音时汽车距山谷x米
则2x=1360-80
x=640

31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?

设答对了x题
4x-(25-x)=85
5x=110
x=22
答对了22题

32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

1.解:在一个底面直径5cm、高18cm的圆柱形瓶内装满水,水的容积为:V1=18*π (5/2)^2=(225/2)π=112.5π (注:^2是平方的意思,这是电脑上面的写法)
一个底面直径6cm、高10cm的圆柱形玻璃瓶,能装下的水的容积是:V2=10*π(6/2)^2=90π;
显然V1>V2,所以不能完全装下,第一个圆柱形瓶内还剩22.5π的水;
设第一个瓶内水面还高Xcm,建立方程如下:
X*π(5/2)^2=22.5π
解得X=3.6
所以第一个瓶内水面还有3.6cm的高度

33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。

解:设只会下围棋的人有X个。
根据题意有如下方程:
(45-5-5-X)+5=3.5(X+5)
40-X=3.5X+17.5
X=5
所以只会下围棋的人有5个
答:只会下围棋的人有5个

34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
丙同学说得对,理由如下:

解:设某同学得了N分,选对了X题,那么不选或选错的就是25-X;
那么得分N=4X-1*(25-X)=5X-25=5(X-5)
所以显然,不管选对了多少题,那么得分永远是5的倍数;
所以3个同学中,只有丙同学说得对。

35.某水果批发市场香蕉的价格如下
购买香蕉数 不超过20kg 20kg以上但不超过40kg 40kg以上
每千克价格 6RMB 5RMB 4RMB
张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?
设买香蕉数分别为 x 和 y
则有方程
6x+5y=264
x + y=50
得x= 14 y=36

平均是264/50大于5元。所以只能是单价6和5或者6和4的组合。两种方程解出来。结果一看就知

我先写这么多,希望楼主采纳,我还会快快更新的。

⑸ 新课标人教版数学七年级上册课时作业本的答案

七年级上学期第一次单元测试
数学试题
姓名
学号
班级
成绩
一、填空题(每小题3分,共30分)
1.如果收入100元记作+100元,那么支出50元记作
元.
2.在数轴上,表示-2的点与原点的距离是
.
3.
=

=
,-4-3=
.
4.今年M市二月份某一天的最低气温为-19℃,最高气温为-3℃,那么这一天
的最高气温比最低气温高
℃.
5.按照神舟号飞船环境控制与生命保障系统的设计指标,“神舟”五号飞船返回舱
的温度为21℃±4℃.该返回舱的最高温度为
℃.
6.比较大小:
0;
.
7.如果

互为相反数,那么
的值等于
.
8.科学家研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为____________cm.(精确到0.1cm)
9.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列--着名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是
.
10.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有
种走法.
二、选择题(每小题2分,共20分)
11.
的相反数是(
)
(A)-3
(B)
(C)3
(D)
12.下列四个数中,在-2到0之间的数是(
)
(A)-1
(B)1
(C)-3
(D)
3
13.在1,-1,-2这三个数中,任意两数之和的最大值是(
)
(A)1
(B)0
(C)-1
(D)-3
14.若
,则
的取值范围是(
)
(A)
>0
(B)
≥0
(C)
<0
(D)
≤0

⑹ 七年级上册数学难题100题,要有答案的

一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)
——合并同类项与移项

【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?

【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

阅读全文

与题题清数学七上答案是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:994
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1343
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069