导航:首页 > 数字科学 > 最小二乘估计法的数学依据是什么

最小二乘估计法的数学依据是什么

发布时间:2022-08-12 06:54:10

A. 最小二乘法的原理是什么怎么使用

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。

∑2(a0 + a1*Xi - Yi)=0(式1-4)

∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)

亦即:

na0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)

得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)

a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9)

这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的一元线性方程即:数学模型。

在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1. x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

在(式1-10)中,m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。

B. 最小二乘法的原理是什么

y和x的关系拟合为线性关系,所有的样本点都在这条直线周围,每个点都与此直线有一定的距离,所有的距离平方和,求其最小的时候相应的该直线的斜率,即最小二乘估计。

C. 什么是最小二乘法及其原理

最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

原理:

在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。

∑2(a0 + a1*Xi - Yi)=0(式1-4)

∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)

亦即:na0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)

得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)

a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9)

这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的一元线性方程即:数学模型。

在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1. x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

在(式1-10)中,m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。

D. 最小二乘法原理及应用

最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
最小二乘法通常用于曲线拟合。很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达。
比如从最简单的一次函数y=kx+b讲起
已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式.
当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这这就需要用到最小二乘法的思想.然后就用线性拟合来求.讲起来一大堆。

E. 最小二乘法计算公式是什么

最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程!最小二乘法公式为a=y(平均)-b*x(平均)。

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

(5)最小二乘估计法的数学依据是什么扩展阅读:

普通最小二乘估计量具有上述三特性:

1、线性特性

所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。

2、无偏性

无偏性,是指参数估计量的期望值分别等于总体真实参数。

3、最小方差性

所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。最小方差性又称有效性。这一性质就是着名的高斯一马尔可夫( Gauss-Markov)定理。这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。

F. 最小二乘法的原理是什么的

最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。
如用标准符号,最小二乘估计可被表示为:
ax=b
(2-43)
上式中的解是最小化
,通过下式中的伪逆可求得:
a'ax=a'b
(2-44)
(a'a)^(-1)a'ax=(a'a)^(-1)a'b
(2-45)
由于
(a'a)^-1a'a=i
(2-46)
所以有
x=(a'a)^(-1)a'b
(2-47)
此即最小二乘的一次完成算法,现代的递推算法,更适用于计算机的在线辨识。
最小二乘是一种最基本的辨识方法,但它具有两方面的缺陷[1]:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的“数据饱和”现象。针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。

G. 最小二乘法原则

普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础。
在已经获得样本观测值 (i=1,2,…,n)的情况下(见图2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为 和 ,并且是最合理的参数估计量,那么直线方程(见图2.2.1中的直线)
i=1,2,…,n (2.2.2)
应该能够最好地拟合样本数据。其中 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。

(2.2.3)
为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。
由于

是 、 的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对 、 的一阶偏导数为0时,Q达到最小。即
(2.2.4)

容易推得特征方程:

解得:
(2.2.5)
所以有: (2.2.6)
于是得到了符合最小二乘原则的参数估计量。
为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记

(2.2.6)的参数估计量可以写成
(2.2.7)
至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机误差项方差的估计量。记 为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为
(2.2.8)
在关于 的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。
在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算出来的,它是一个“估计值”,或者“点估计”,是参数估计量 和 的一个具体数值;但从另一个角度,仅仅把(2.2.6)看成 和 的一个表达式,那么,则是 的函数,而 是随机变量,所以 和 也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把 和 作为随机变量,有时又把 和 作为确定的数值,道理就在于此。

阅读全文

与最小二乘估计法的数学依据是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:994
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1343
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069