‘壹’ 经济数学包括什么
经济数学是高等数学的一类,分为微积分、线性代数、概率论与数理统计。经济数学培养既具有扎实的数学理论基础又具有经济理论基础,且具有较高外语和计算机应用能力,能在金融证券、投资、保险、统计等经济部门和政府部门从事经济分析、经济建模、系统设计工作的经济数学复合型人才。 经济数学是高等职业技术院校经济和管理类专业的核心课程之一。该课程不仅为后继课程提供必备的数学工具,而且是培养经济管理类大学生数学素养和理性思维能力的最重要途径。
学生应系统学习和掌握数学和应用数学的基础理论和基本方法,接受数学模型、计算机软件方面的基本训练,具有较好的科学素养;系统掌握经济学、管理学的基础理论和基础知识;熟练掌握一门外语,具有较强的外语阅读能力和相当的外语听、说、写、译能力,能利用外语获得专业信息,通过国家大学外语四级水平测试;具有较强的计算机应用能力,能够利用现代信息技术收集数据和查询资料;能够熟练运用数学软件和通过数学建模分析、解决实际问题。
经济数学主要课程设有数学分析、高等代数、概率论与数理统计、复变函数、实变函数、程序设计、西方经济学、数学模型、计量经济学、金融经济学、金融投资数量分析、风险管理、经济预测与决策、信息系统分析与设计、大系统分析等。该专业方向的学生修满规定的学分,并达到学位授予要求的,授予理学学士学位。
‘贰’ 经济数学问题
最上面第2题,xdx=(dx2)/2把u=x2换元,就得到(1/(1+u2))/2,这个原函数自己查公式就得出来了第1题u=2x+1,=2dx,所以dx=()/2,换元得到((u的99次方)/2),这个很熟悉吧,查公式第2题xf(x)=x2e的x次方,这个函数求积分,很简单,不用看分布积分,我教你一个方法,很简单,哪个容易不断求导,最后得常数,那就选那个数放右边,另一个数放左边,左边求积分,右边求导数,这是一个老教授教的,那么左边就是e的x次方,右边就是x2,垂直列出来 e的x次方(求积分) x2(求导数) e得x次方 2x e的x次方 2 然后右斜相乘,单数的斜线为正号,偶数为负号,最后横线也算斜线,所以得到结果为x2e的x次方-2xe的x次方+2e的x次方,这就是积分的原函数,把上下限带进去就可以得出结果了
‘叁’ 数学在经济生活中有哪些应用
1、工作生活中数学的应用:汽车、电子、房地产、移动通信、 IT 产业、教育等。
2、日常生活中数学的应用:购物、估算、计算时间、确定位置和买卖股票等。
3、各个学科上数学的应用:语文、物理、化学、音乐、美术、舞蹈等。
4、数学分析、高等代数、解析几何、常微分方程、统计初步
5、信息技术应用、近世代数、概率论、数据结构、复变函数、微分几何
6、实变函数、数学模型、拓扑学、偏微分方程、几何基础
7、数值分析、数值代数、运筹学、组合数学、小波分析、模糊数学、数学软件等等
数学在经济学中的作用:
1、数学在经济学中的工具性作用 数学作为经济研究的基础工具, 其作用是不可忽视的, 利用数学语言我们可以将经济学中的某些问题描述得非常清楚, 并且逻辑推理严密精确, 可以防止漏洞和错误, 应用已有的数学知识我们还可以推导新的结论, 得到仅凭直觉无法或不易得出的结论。
因此, 运用数 学知识做经济学的理论研究可以减少无用争论。同时, 由于经济活动的多样性, 研究中存在许多变化的因素, 导致了经济研究的错综复杂。
而数学就恰恰为这些复杂的思想和现象提供了简洁明了的解释, 为许多错综的数据提供了计算模型, 从而使经济研究简洁条理。
2、数学在经济学中的思想作用 数学的严谨思想在追求精确和理性的经济学中占有非常重要的地位, 数学思想越来越多地贯穿到经济学中来。
改革开放以来, 西方经济学作为市场经济运行描述的基本理论, 对我们经济学学习和研究的作用越来越重要。
我们发现, 西方经济学的思维方式和推理方式的深刻特点之一就表现在其数学性方面, 也正是这一特征使人们常常把经济学看成是最接近自然科学的社会科学学科。
在整个社会科学中, 经济学的理论形式、 研究方法是公认为最接近自然科学的。
这表明, 数学作为一种理论信念、 方法论和研究手段, 十分明显地体现在西方经济学的基本特征中。
按传统流行的科学观, 一门学科达到科学的一个重要标准是看它能否充分运用数学方法。
而在经济学中, 对于经济现象、 经济运行及其规律的描述与研究, 正需要数学方法与数学思想, 从而达到它的科学性。
‘肆’ 数学与经济关系涉及哪些方面
数学对现代经济学研究和发展的影响
随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。
二、数学在经济学应用中的意义
如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。
三、数学在经济学中应用的局限性
首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济学的发展
四、数学和经济学关系中几点误区
1.否定数学在经济学中的作用。国内有的经济学家认为产生经济思想非常重要从而否定数学的作用,否定技术性比较强的成果。我们不否认经济思想的重要性,但如果没有数学作为工具,一般来说无法保证自己的经济思想或结论是否严谨,有没有错误的应用。现代经济学已经成为一门非常严谨的社会科学学科。没有严谨的讨论,你的思想或结果就不会被别人承认。也有人认为用数学来研究的经济问题就是远离现实。其实经济学里面用数学讨论的绝大部分问题都是来源于现实世界,非常具有现实性和指导性。
2.经济学数学化过分倾向。经济学数学化的过分倾向束缚了人们解决问越的思路,限制了人们寻求其他有效的解决方法,从而一定程度上阻碍了经济学的研究与发展。经济学是研究资源配置及社会经济关系的一门科学,它既有社会科学属性,又有自然科学属性。为了资源配置更合理有效,经济学有必要借助数学思维工具。作为社会科学,经济学研究必须借鉴社会科学的其他分支学科的研究方法,因而资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,数学既不能对经济现象做出定性分析,也不可能将经济问题全部公式化或模型化,就要用其他的一些研究方法
‘伍’ 小学数学经济问题
100元60件,减一元加三件。减4%即100-4=96元,加3×4=12件,即买60+12=72.利润相同,问成本价多少?
设成本价为x,根据题意得:(100-x)×60=(96-x)×72
6000-60x=6912-72x
12x=912
x=76(元)
如果不方便用方程也可以解答:因为72件96元卖出跟60件100元卖出去的利润相同,那么72×96-60×100就是72-60=12件的成本价(卖出去所得的钱就是成本之差即为成本之差,即72-60件的成本)(卖出去的钱即成本加利润)
‘陆’ 数学题--经济问题
1 设甲商品的定价为X 乙商品的定价为y
X+Y=470
X-Y=50
解 x=260 y=210
甲种商品的成本 x*(1-30%)=182
y*(1-40%)=122
‘柒’ 数学的经济问题 请速回 有好评!
完了。我又要教育你了。800KG
‘捌’ 数学题。经济问题。
原来利润:100×20%×50=1000元
现在利润:(100+100×20%)×0.9×50×3-50×3×100=1200元
∴每天的利润比原来增加了1200-1000=200元
‘玖’ 经济学 数学问题
本科阶段的经济学大盖能用基础数学知识,微积分和概率及数理统计基础,微积分中极值求法如拉格朗日极值法很常用,概率的概念,数学期望和方差等。如果是要求较高的经济学专业可能还要用到微分方程,计量经济学还会用到像“最小二乘法“等数理统计分析方法。本科以后阶段的经济学,除了上面说的数学知识,可能会用到的数学知识:线性规划、非线性规划、拓扑学、微分方程、实分析、复分析等等。此外,统计学也会学很多,如抽样方法,实验设计等,这些是统计学知识而不算是数学知识了。
‘拾’ 六年级数学经济问题
设原价为1
则现在售价为1.2
又因为是按售价的80%出售
所以原售价是1.2/80%=1.5
商场定价时期望利润时1.5-1/=50%