1. 抛物线是什么意思
抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。
抛物线是一种圆锥曲线。
满意请采纳。
2. 抛物线定义讲解
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。 抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等
四种方程
抛物线四种方程的异同
共同点:
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
3. 什么是抛物线
1.什么是抛物线?
平面内,到一个定点f和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.
另外,f称为"抛物线的焦点",l称为"抛物线的准线".
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面
直至与其一边平行,就可以做一条抛物线。
4. 数学的抛物线的定义是什么
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
5. 抛物线的定义是什么
数学上的抛物线,就是同一平面上到定点(焦点)的距离与到定直线(准线)的距离相等的点的集合 ;
二次方程所表示的图象就是抛物线(包括x的二次方程和y的二次方程);
直线不是抛物线 .
6. 抛物线定义
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
(6)数学抛物线定义是什么意思扩展阅读:
抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
抛物线具有许多重要的应用,从抛物面天线或抛物线麦克风到汽车前照灯反射器到设计弹道导弹。它们经常用于物理,工程和许多其他领域。
7. 什么是抛物线的定义
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
在抛物线
中,焦点是
,准线的方程是
,离心率
,范围:
;
在抛物线
中,焦点是
,准线的方程是
,离心率
,范围:
;
在抛物线
中,焦点是
,准线的方程是
,离心率
,范围:
;
在抛物线
中,焦点是
,准线的方程是
,离心率
,范围:
。
8. 什么是抛物线
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法[1]。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
中文名
抛物线方程
外文名
parabolic equation
应用学科
数学
适用领域范围
数学、物理、建筑学等
解释
指抛物线的轨迹方程
定义
抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线[2] 。
方程
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中P(x0,y0)为抛物线上任一点[3] 。
标准方程
y^2=2px(p>0)
y^2=-2px(p>0)
x^2=2py(p>0)
x^2=-2py(p>0)
图形
范围
x≥0,y R
x≤0,y R
y≥0,x R
y≤0,x R
展开全部
对于抛物线y^2=2px(p≠0)上的点的坐标可设为( ,y0),以简化运算。
抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x1,y1)、B(x2,y2),直线OA与OB的斜率分别为k1,k2,直线l的倾斜角为α,则有y1y2=-p^2,x1x2= ,k1k2=-4,|OA|= ,|OB|= ,|AB|=x1+x2+p。
几何性质
方程的具体表达式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0[4] 。
9. 抛物线的定义
抛物线的定义是平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。
在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。