1. 函数极限怎么求
采用洛必达法则求极限。
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
存在准则
单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
2. 高数极限问题
极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.
极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N时,有且则有 .
利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和 ,使得。
例[1]
求的极限
解:因为单调递减,所以存在最大项和最小项
则
又因为
(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1] 证明下列数列的极限存在,并求极限。
证明:从这个数列构造来看 显然是单调增加的。用归纳法可证。
又因为
所以得. 因为前面证明是单调增加的。
两端除以 得
因为则, 从而
即 是有界的。根据定理有极限,而且极限唯一。
令 则
则. 因为 解方程得
所以
高等数学中极限问题的解法详析
2018-06-30
6页
4.46分
用App免费查看
数学分析中极限的求法
摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.
极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N时,有且则有 .
利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和 ,使得。
例[1]
求的极限
解:因为单调递减,所以存在最大项和最小项
则
又因为
(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1] 证明下列数列的极限存在,并求极限。 证明:从这个数列构造来看 显然是单调增加的。用归纳法可证。
又因为
所以得. 因为前面证明是单调增加的。
两端除以 得
因为则, 从而
3. 求极限的所有方法,要求详细点
基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。
7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
8、特殊情况下,化为积分计算。
9、其他极为特殊而不能普遍使用的方法。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想象,因此可以忽略不计。
4. 总结求函数(数列)极限的方法
求数列极限可以归纳为以下三种形式:
★抽象数列求极限
这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
★求具体数列的极限
a.可以参考以下几种方法:
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,
从而得到数列的极限值.。
b.利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
★求n项和或n项积数列的极限,主要有以下几种方法:
a.利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
b.利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
c.利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。
d.利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
e.求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。
5. 求函数极限的方法有几种具体怎么求
1、利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
6. 求极限的方法总结
求极限的方法总结如下:
1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。
3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。
7. 函数极限怎么求技巧
你好
第一种:利用函数连续性:lim f(x) = f(a) x->a
(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)
第二种:恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
第三种:通过已知极限
特别是两个重要极限需要牢记。
(7)数学分析级数怎么求极限函数扩展阅读
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。
1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立
(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A
不但能证明极限存在,还可以求极限,主要用放缩法。
2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
3.柯西准则
数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
望采纳祝你好运
8. 求函数极限
求函数极限的方法:
1、代入后如果能算出具体数值,或判断出是
无穷大,就直接带入。
2、如果代入后发现是0/0,或∞/∞,或
化简,或用用罗毕达法则求导。直到能计算出
具体数或判断出结果为止。
3、无穷小代换法,此法在国内甚嚣尘上,用
时千万要小心,加减时容易出错。
4、其它不定式,化成可求导的0/0或∞/∞型
计算或判断。
5、运用两个基本极限。
6、运用麦克劳林级数,或泰勒级数,然后将函数展开。
7、运用夹挤法,求两头的极限。
两边夹定理:
1、当x∈U(Xo,r)(这是Xo的去心邻域,有个
符号打不出)时,有g(x)≤f(x)≤h(x)成立 ;
2、g(x)—Xo=A,h(x)—Xo=A,那么,f(x)极限
存在,且等于A
不但能证明极限存在,还可以求极限,主要用
放缩法。
利用函数连续性:
lim f(x) = f(a) x-a (就是直接将趋向值带出函
数自变量中,此时要要求分母不能为0)
恒等变形,当分母等于零时,就不能将趋向值
直接代入分母。
9. 数分函数求极限
1、本题是无穷小/无穷小型不定式;
2、本题的解答方法有两种:
第一种方法:二项式展开,其实质是麦克劳林级数展开。
在国内的教学中,大学数学教师的绝大部分,
都是把麦克劳林级数,统统说成是泰勒级数。
而二项式展开的无穷级数形式,国内是系统
回避的,一般都是以泰勒级数搪塞过去,并
没有把它作为一种特别的展开方法进行教学。
第二种方法:运用罗毕达求导法则。
第三者方法:另类二项式展开。这个展开与第一种方法并
没有本质差别。但是运用起来可以回避等价
无穷小带来的问题,尤其在(e^tanx - e^sinx)
over (tanx - sinx)这类问题上。
3、具体解答如下: