导航:首页 > 数字科学 > 数学为什么与计算机如此密切

数学为什么与计算机如此密切

发布时间:2022-08-15 22:44:16

A. 计算机与数学关系 是什么

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分
支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动
数学发展,从某种意义上可以说是孩子长得比妈妈还高了。
但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpi
nning of computer science(计算机科学的数学基础),-- 也就是理论计算机科学。
现代计算机科学和数学的另一个交叉是计算数学/数值分析/科学计算,传统上不包含在理
论计算机科学以内。所以本文对计算数学全部予以忽略。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密
切,以至于它们在不少场合下成为同义词。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复
变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程
上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这
些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分
,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计
算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以
分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是
算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶
地发现代数竟然有如此之多的应用。
但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大
约十几年前,终于有一位大师告诉我们:不是。D.E.Knuth(他有多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete Mathematics。 Concrete这个词在这里有两层含义:
第一,针对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题
关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些
数学。为了直接面向应用的需要,他要提倡“具体”的数学。在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的问题--公理系统的各种性质之类。而一些具体集合的性质,各种常见集合,关系,映射都是什么样的,数学家觉得并不重要。然而,在计算机科学中应用的,恰恰就是这些具体的东西。Knuth能够首先看到这一点,不愧为当世计算机第一人。
第二,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,
都是有用的数学!
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域
包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并
行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相
交叉,而且新的课题在不断提出,所以很难理出一个头绪来。
下面随便举一些例子。
由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论)
,代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。
很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这就大错特错了。
现代密码学至少包含以下层次的内容:
第一,密码学的基础。例如,分解一个大数真的很困难吗?能否有一般的工具证明协议正
确?
第二,密码学的基本课题。例如,比以前更好的单向函数,签名协议等。
第三,密码学的高级问题。例如,零知识证明的长度,秘密分享的方法。
第四,密码学的新应用。例如,数字现金,叛徒追踪等。

计算机的核心是计算,其本质是数学。计算机的生命是靠程序延续,算法是程序的灵魂
摘自网络

B. 数学对计算机的贡献

数学是计算机发展的基础。

从计算机的发明开始,最初的计算机就是为了实现数字计算。早期的计算机也是以处理数学好计算为目的的。

计算机上的算法,都是来自数学。计算机专业的必修课数学也占很大比例,图论等都是从数学发发展过去的。

计算机编程需要逻辑,数理逻辑是最严谨的,它也是计算机软件得以保证质量的基础。

计算机的发展也依赖数学。硬件上的更新都要用数学模型来模拟。

人类的个个方面的发展都是各学科协同的结果。所以,数学为计算机做出了贡献,同时,计算机也促进了数学的发展。

C. 大学数学与计算机的关系大吗

大学数学与计算机的关系大。

数学专业与计算机专业的关系还是比较紧密的,目前不少数学专业都开设了较多的计算类课程,比如信计专业就是一个典型的代表。从当前考研的情况来看,数学相关专业跨考计算机专业是比较普遍的现象,而且由于具有扎实的数学基础,所以在读研计算机专业期间,也并不会遇到太大的障碍。

大一高等数学攻略注意事项

高等数学老师还是需要自己好好的熟悉一下,比如咱们要是不满意你的老师,那么一定要调整好自己的心态,否则你是么有什么好的心情好好的上课的。

书本一定需要熟悉,因为高等数学的概念性的知识非常的多,而且一下子会出来很多,所以空的时候自己尽量的多花些时间在课本上。

D. 计算机与数学之间是一种什么样的关系

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动数学发展,从某种意义上可以说是孩子长得比妈妈还高了。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大约十几年前,终于有一位大师告诉我们:不是。
第一,针对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些数学。为了直接面向应用的需要,他要提倡“具体”的数学。
第二,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,都是有用的数学!
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。

E. 数学与计算机结合的意义

计算机用到的数学理论都不方便在普及课堂上讲授的,
象二值逻辑的连接词功能集中,与非连接词构成连接词完备集,因此计算机的逻辑电路可以完全用与非门设计,节省了集成电路设计制造工艺;
程序设计中,对源代码字符进行扫描编译,用到有限自动机理论;
显示屏幕是二维平面,用来模拟三维画面,要用到射影几何,还要用解析几何判断图形之间的关系;
很难给初学者讲明白的;

还不如讲点,
统计学的一些基本知识;
在规范市场中股票期权定价的BS模型;
博弈论在选举中的应用,象囚徒困境什么的

F. 数学与计算机的关系

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分
支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动
数学发展。
现代计算机科学和数学的另一个交叉是计算数学/数值分析/科学计算,传统上不包含在理
论计算机科学以内。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密
切,以至于它们在不少场合下成为同义词。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复
变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程
上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这
些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分
,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计
算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以
分析为中心的传统数学分支被相对称为“连续数学”。

G. 数学与计算机算法有什么关系

数学是基础学科,有丰富的数学基础可以对理解编程中的逻辑有帮助。

编程对不同的人有不同的意义:

对于一般的程序员就是代码的产出和可运行程序(数学在这里面并不是特别重要,更重要的是对各种框架的理解、熟练掌握、设计模式等)。

对于算法工程师来说,数学就很重要了(例如机器学习,密码学,计算机图形学等,当然这个对题主来说还太遥远)。

题主说的函数实际上就是为了实现目的的一种封装形式,而递归只是在函数中调用自身(当然需要终止条件)。

(7)数学为什么与计算机如此密切扩展阅读:

计算机的三个主要特征

1、运算速度快:计算机内部电路能高速准确地完成各种算术运算。当今计算机系统的计算速度已达到每秒数万亿次运算,微机也可达到每秒一亿次运算,使大量复杂的科学计算问题得以解决。例如,计算卫星轨道、大型水坝和24小时的天气可能需要数年甚至数十年,而在现代,用电脑几分钟就可以完成。

2、计算精度高:科学技术的发展,特别是尖端科学技术的发展,对计算精度要求很高。计算机控制的导弹之所以能够准确命中预定目标,与计算机的精确计算是分不开的。一般的计算机可以有十几位甚至几十位数字(二进制)有效数字,其计算精度可以从千分之几到百万分之一,是任何计算工具都无法比拟的。

3、逻辑操作能力强:计算机不仅可以进行精确计算,还具有逻辑操作功能,可以对信息进行比较和判断。计算机可参与操作数据、程序、中间结果和最终结果保存,并可根据判断结果自动执行下一条指令,供用户随时调用。

阅读全文

与数学为什么与计算机如此密切相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:994
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1343
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069