导航:首页 > 数字科学 > 小学数学的归一问题的重难点在哪里

小学数学的归一问题的重难点在哪里

发布时间:2022-02-07 14:32:16

1. 小学数学怎样确定教学重难点

解决问题,即应用题的教学,贯穿整个小学阶段,历来是小学数学教学的重点和难点。那么在新课改下如何进行解决问题的教学呢?下面谈一下自己学习后的粗浅见解。
一、要理解解决问题的基本过程。
数学问题解决,指的是按照一定的思维对策进行的一个思维过程,一步一步地接近目标,最终达到目标。也就是说,数学领域中的解决问题,不只是关心问题的结果,更重要的是关心求得结果的过程。要解决问题,就要搞清问题的求解目标和已知条件、未知条件,这是问题解决的第一步。它对思维的敏捷性和深刻性提出了很高要求,也为思维敏捷性和深刻性创造了极好的训练机会。问题解决的第二步是设计求解计划,这要求大量的分析综合,尝试与猜测、类比与联想,这对训练思维的灵活性和独创性大有益处。问题解决的最后一步,就是对所得结果作检验和回顾。这时训练思维的批判性和深刻性是具有十分重要的作用。
二、具体建议。
1、注意对“好”的问题的正确理解。
问题应当具有一定的探索性,解决这个问题没有现成的方法和程序,而需要发挥学生的各种思考和创造;问题应当成具有一定的现实性和趣味性,既非人为编造的,又能激发每个学生的好奇心;解决问题的途径和策略往往是多种的,需要学生综合应用所学知识,并发挥多种的数学思考;问题应当具有一定的启示意义,有利于学生掌握重要的数学思想方法和解决问题的策略,而不是所谓的“偏题”、“怪题”;同时,问题应具有适当的开放性,这种开放并不一定表现在答案的多样性上,更为重要的是问题能使所有的学生都尝试解决,不同的学生在解决问题的过程中都能获得发展。
2.帮助学生读懂题。
对于解决问题,学生的困难,一是读懂题,二是分析数量关系。而只有读懂题,才能为后面分析数量关系奠定基础。怎样是读懂题呢?我们可以要求学生:一遍读,搞清楚是什么事;二遍读,进行筛选,捕捉有用的数学信息,谁和谁有关系,有什么关系。三遍读,告诉我们解决什么问题。这样只有我们读懂了题,才能更好地进行解决问题。教师在指导学生读题时可用手势、情景再现等方式帮助学生读懂题。
3、在理解运算意义的基础上,分析数量关系。
解决问题首先需要学生具有数学的眼光,能识别存在于日常生活、自然现象与其他学科等中蕴涵的数量关系,并把它们提炼出来,运用所学的知识对其进行分析,然后综合应用所学的知识和技能加以解决。其次我们要重视对运算意义的教学。加、减、乘、除运算的意义是核心概念,只有学生真正理解了加、减、乘、除的意义,才知道在什么时候该用什么运算来解决问题。再次要注重对数量关系的分析。在解决具体问题时,教师要鼓励学生通过实际操作、思考讨论,寻找问题中所隐含的数量关系,强调对问题实际意义和数学意义的真正理解。
4、注重用方程解决问题。
方程是一种很好的数学思维,它能帮助人们用顺向思维解决问题,思维过程比较简单。用方程有意义,对于逆向思维有帮助。有些学生不愿意用方程,觉得它格式繁琐。教学中教师不要死抠格式,要有简化意识,明白教学的目的在于培养学生应用方程的思想解决问题。
5.形成解决问题的一些基本策略,体验解决问题策略的多样性。
解决问题活动的价值不只是获得具体问题的答案,更重要的是学生在解决问题过程中获得的发展。其中重要的一点在于使学生学习一些解决问题的基本策略,体验解决问题策略的多样性,并在此基础上形成自己解决问题的某些策略。教学中要重视对学生解决问题策略的指导,将“隐性”的解决问题的策略“显性化”。如在具体求解问题前,教师可以鼓励学生思考需要运用哪些解决问题的策略;在解决问题的过程中,教师可以根据具体情况,适时使学生注意是否要调整解决问题的策略;在解决问题之后,教师要鼓励学生反思自己所使用的策略,并组织全班交流。总之,教师要将解决问题的策略作为重要的目标,有意识地加以指导和教学。另外,对学生所采用的策略,在老师的眼中也许有优劣之分,但在孩子的思考过程中并没有好坏之别,都反映出学生对问题的理解和所作出的努力。只要学生的解题过程及答案具有合理性,就值得肯定,因为这为树立学生的自信心和培养他们的创新精神提供了很有价值的机会。

2. 小学数学教学设计重难点一般怎么写

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

3. 小学数学解决问题除了归一问题还有什么问题

还有植树问题、差倍问题、相遇问题、追及问题、时钟问题等

4. 小学数学教学的重点和难点是什么

希望对你有帮助,全都是自己打出来的哦
小学数学?重点?其实很简单,只要上课听懂
重点有三个
一个是代数,第二个平面几何和立体几何,第三个是统计与一些杂题。
代数主要包括方程,还有一些数学的基础,例如什么质数合数什么的。特别是方程,要重点复习。
平面几何主要包括小学学的基础图形,还要记住基础概念,例如什么三角形具有稳定形,还要背公式,最总要的一点是灵活灵用。
立体几何,这是小学的难点,建议多做题。
统计等,这些都很简单,可以简要看一看

1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh

希望能给你帮助! 谢谢....

5. 小学数学归一问题的具体解题步骤是怎样的

归一问题就是把数量归结为平均每小时行多少千米,每立方米重多少千克,每千克多少元……然后再归总,是多少千米,多少千克,多少钱……

6. 小学数学教学中难以解决的重难点问题有哪些

小学数学教学内容包罗万象,每堂课都有它自己的教学重点和教学难点.教学难点是学生在课堂上最容易疑惑不解的知识点,是学生认知矛盾的焦点,它犹如学生学习途中的绊脚石,阻碍着学生进一步获取新知.化解难点、解除疑惑,是教学过程顺畅有效的重要保证.因此,在一定意义上来说,教学难点本身也属于教学重点.教学重点就是指在教学过程中学生必须掌握的基础知识和基本技能,如概念、性质、法则、计算等等.为了帮助学生解决重点、理解难点,使感性知识理性化,实现知识的长久记忆和灵活运用,教师在突破重难点时要讲究教法的直观、形象和具体,要讲究新旧知识之间的前后联系,要补充相关的感性素材.教师的教学只有结合学生实际,抓住重点,突破难点,教学效果才能得到提高.
下面谈谈笔者在教学实践中突破教学重难点的几点做法:
一、抓住强化感知参与,运用直观的方法突出重点、突破难点
直观教学在小学数学教学中具有重要的地位.鉴于小学生的思维一般地还处在具体形象思维阶段,而在小学数学教学中,他们要接触并必须掌握的数学知识却是抽象的,这就需要在具体与抽象之间架设一座桥梁.直观正是解决从具体到抽象这个矛盾的有效手段.在教学中,教师应多给学生用学具摆一摆、拼一拼、分一分等动手操作的机会,使学生在动手操作中感知新知、获得表象,理解和掌握有关概念的本质特征.如在教学中,可让学生通过动手画、量、折叠、剪拼几何图形,做一些立方体模型,使学生感知几何形体的形成过程、特征和数量关系.如学生在用圆规画圆时,通过固定一点、确定不变距离、旋转一周等操作,对圆心、圆的半径、圆的特征和怎样画圆就会有较深刻的感性认识.
二、抓住数学来源于生活,运用联系生活的方法突出重点、突破难点
现代教育观指出:“数学教学,应从学生已有的知识经验出发,让学生亲身经历参与特定的教学活动,使学生感受数学与日常生活的密切联系,从中获得一些体验,并且通过自主探索、合作交流,将实际问题抽象成数学模型,并对此进行理解和应用.”所以,我们数学应从小学生已有的生活体验出发,从生活中“找”数学素材并多让学生到生活中去“找”数学、“想”数学,使学生真切感受到“生活中处处有数学”.如我们都知道“利息”知识源于生活,在日常生活中应用广泛.我在教学“利息”时,让学生通过5000元存入银行,计算整存整取三年期、整存整取五年期,体会到期后会取得多少利息等.这样从学生的实际出发,在课堂中充分让学生“做主”,引导学生从生活实际中理解了有关利息、利率、本金的含义,体会了数学的真实.只有让数学走进生活,学生才会愿学、乐学,从而激发起学生学数学、用数学的热情.
三、抓住小学生的特点,运用游戏的方法突出重点、突破难点
小学生的特点是好奇好动,对游戏有很大的兴趣.一般情况下,他们的注意只能保持15分钟左右.在教学中,如果组织学生通过灵活多变的游戏活动来学习数学知识,他们就会对数学学习产生浓厚的兴趣,把注意力长时间地稳定在学习对象上来,使教学收到很好的效果,而且课堂气氛妙趣横生,师生情感融为一体.如:学习“倍”的概念时,和学生一起做拍手游戏.教师首先拍2下,然后拍4个2下,让学生回答第二次拍的是第一次的几倍.接着,按要求师生对拍,进而同桌同学互拍.这样的教学过程,学生始终精神集中、情绪高涨.这种简单易行的游戏,深受学生喜爱,从而达到了教学的目的.
四、抓住知识间的异同,运用比较的方法突出重点、突破难点
着名教育家乌申斯基认为:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的.”小学数学中有许多内容既有联系又有区别,在教学中充分运用比较的方法,有助于突出教学重点、突破教学难点,使学生容易接受新知识,防止知识的混淆,提高辨别能力,从而扎实地掌握数学知识,发展逻辑思维能力.如:课堂教学中,对学生回答问题或板演,有些教师总是想方设法使之不出一点差错,即使是一些容易产生典型错误的稍难问题,教者也有“高招”使学生按教师设计的正确方法去解决,造成上课一听就懂、课后一做就错的不良后果.这样其实是教师对教学难点没吃透、教学中教学难点没突破的反映.教师在教学中,可通过一两个典型的例题,让学生暴露错解,师生共同分析出错误的原因,比较正、误两种解法,从正反两个方面吸取经验教训,使学生真正理解重难点,灵活运用新知.
五、抓住知识间的联系,采用转化的策略突破重点和难点
转化的方法就是利用已有的知识和经验,将复杂的转化为简单的,将未知的转化为已知的,将看来不能解答的转化成能解答的,简单地说就是化未知为已知、化繁为简、化曲为直等.在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,让学生掌握多种转化途径,就能掌握解题策略,提高解题能力.以六年级上册“解决问题的策略――替换”为例,“替换”是一种应用于特定问题情境下的解题策略,从学生的认知结构上看,掌握这一解题策略的过程是顺应的过程.因此,这节课的教学重点就是教学难点,即会用“替换”的策略理解题意、分析数量关系.除此以外,这节课的另一个教学难点是,在用“替换”的策略解决相差关系的问题时,要找准总数与份数的对应数量,理解总数的变化,从而达到突出重点、突破难点的目的.
“教学有法,但无定法.教无定法,贵在得法.”总之,在数学教学中如何突出重点、突破难点,并没有固定不变的模式.教师的教服务于学生的学,只要我们每一位数学教师在备课上多动脑筋,多花心血,认真研究大纲,努力钻研教材,结合学生实际,弄清重点、难点,合理安排教学环节,精心设计课堂提问,全身心投入到教学工作中去,就能找到关于突出重点、突破难点的“锦囊妙计”,从而实现教学效果的最优化.

7. 小学数学教学如何找准重难点

所谓教学重点,就是学生必须掌握的基本技能.如:意义、性质、法则、计算等等.如何在数学教学中突破重点和难点呢?这就需要我们每一位数学教师在教学实践中不断地学习、总结、摸索.通过自己十多年来的数学教学实践,对此问题有如下点滴体会和做法.

一、认真备课,吃透教材,抓住教材的重难点是突破重难点的前提

小学数学大纲指出:小学数学教学,要使学生不仅长知识,还要长智慧……,培养学生肯于思考问题,善于思考问题.做为一个数学教师,要明确这一目的,把我们的主要精力,放在发展学生智力上,着眼于培养和调动学生的积极性和主动性,引导学生学会自己走路,首先自己要识途.我感到,要把数学之路探清认明,唯一的办法就是深钻教材,抓住各章节的重点和难点,备课时既能根据知识的特点,又能根据学生认识事物的规律,精心设计,精心安排,取得事半功倍的效果.因此,有课前的充实准备,就为教学时突破重点和难点提供了有利条件.

二、以旧知识为生长点,突破重点和难点

小学数学是系统性很强的学科,每项新知识往往是旧知识的延伸和发展,又是后续知识的基础.知识的链条节节相连、环环相扣、旧里蕴新,又不断化新为旧,不仅纵的有这样的联系,还有横的联系,纵横交错,形成知识网络,学生能认识知识之间的联系,才能深刻理解,融汇贯通.数学教学就是要借助于数学知识的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的连结,用数学学科本身的逻辑关系,训练学生的思维.数学教学并没有固定模式,实际教学中还要考虑到教学内容的一些特点,当新旧知识之间有紧密的逻辑关系或所学知识与旧知识之间没有实质性的变化,只是认知结构中原有知识的特例时,教学时就以原有知识为生长点,直接由旧到新,即从学生已有的知识和经验出发.因为学生获取知识,总是在已有的知识经验的参与下进行的,脱离了已有的知识经验基础进行教学,其原有的知识经验就无法参与,而新旧知识连结纽带的断裂,必然会给学生带来理解上的困难,使其难以掌握所学的知识.正因如此,自己在教学中运用了迁移规律,来实现重、难点的突破.
1.若一个新知识可以看作是由某一个旧知识发展而来的,教学中则要突出“演变点”,达到突破重点难点的目的:
如“有余数除法的验算”这部分知识,要以前面能整除的除法验算为基础.两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”.教学时,不但复习能整除的验算方法,还以127÷6为例要复习有余数的除法,其中重点追问:“这道题中127÷6,商21是平均分的127吗?那么平均分了多少?验算时只用商和除数相乘行吗?应怎么办?这一系列问题,大家讨论”.这样就能顺利地掌握新规律和验算方法.
2.若一个新知识可以看作是由两个或两个以上旧知识组合而成的,教学中则通过突出“连接点”这一途径,从而突破重点难点:
如“异分母分数加减法”是由同分母加减法的计算方法和通分两个旧知识组成的,它的关键问题是因为分数单位不同不能直接相加减,教学新知识前复习同分母分数加减法:

这是旧知识,并提问:同分母分数加减法的法则是什么?为什么它们能 为什么?这时又可用旧知识——通分来代替,则成为两个旧知识的连接点,这就是今天要学习的新内容异分母分数加减法.并请同学们在此基础上讨论此题的计算步骤,抓住规律“化异为同”,沟通新旧知识,从而突破难点.
3.若一个新知识可以看作与某一些旧知识属同类或相似,教学时则要突出“共同点”,进而突破重点难点:
如除数是两、三位数的除法是多位数除法的重点和难点,在这部分知识教学中,教师的主要任务是以学生为主体,引导学生运用迁移规律,分层次逐步推进,突破各个难点,学好试商的方法.除数是两、三位数的除法,是以除数是一位数的除法为基础的,后者是除数由一位变为两位、三位,出现了从被除数的哪一位除起,先看被除数的前几位的问题.但无论除数是几位数,试商方法都是一致的,即有共同点,就是教学中应抓住的,教学时,先以除数是一位数的除法为例,复习一位数除法的计算法则及试商方法,从而启发学生明白除数是两位数的除法的计算法则及试商方法同一位数除法相同,进而再研究除数是三位数的除法,通过三个层次的教学,总结归纳出除数是一、二、三位数的除法都是从最高位除起,除数是几位数,就看被除数的前几位,除到哪一位够除,就把商写在哪一位的上面,每次除得的余数必须比除数小.这就抓住了一类知识的共同点,仿旧知识学习新知识,再把新知归为旧知识.学生容易理解记忆,为学好多位数的试商,达到正确地迅速地求出商,提高计算能力奠定了基础.因此,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,找准知识的生长点,帮助学生建立新旧知识的联系,是教学中突破重点难点的又一途径.

三、依据教材内容的重点和难点选择板书内容,并以板书设计为突破口

板书是课堂教学的缩影,是揭示教学重点难点的示意图,也是把握重点、难点的辐射源,板书起着提纲挈领的作用,它是在吃透教学大纲的基础上,根据教学的要求、特点和学生的实际情况设计出来的,把提纲性、艺术性、直观性融为一体,既起到纲举目张的作用,又收到激发兴趣、启迪思维的效果.自己通过多年来的实践能够根据教学内容的特点,认真选择突出重点的板书内容,精心设计板书,并力求做到板书的形式新颖、布局合理、有层次、别具一格,突出重点.例如:在备“正反比例应用题对比练习课”时,为了突破本节课的重点难点,我把突破口放在板书设计上:如下:
正反比例应用题对比练习课
不同点:

2.等式:商=商 积=积

相同点:
1.意义:x变、y随x变
2.步骤:相同
从板书的内容上看体现了这节课的重点和难点,从板书的形式上看,比较直观,对比性强,学生便于比较,对学生能够起到引导的作用,于是老师提出问题:通过这节课的学习,谁能总结归纳正反比例应用题的异同点是什么?通过学生的思考与板书内容的沟通,学生便从正反比例的意义上、解题思路上、条件方法上总结出正反比例应用题的异同点.因此教师如何根据教材特点,选择板书内容,合理设计板书格局是突破重点难点的途径之一.

四、强化感知,突破重点、难点

几何部分中的概念及有关知识抽象,学生难以理解、难以接受,要突破这些难点,教学中必须遵循儿童的认知规律,用形象、鲜明的直观教学手段,强化感知,突破难点.
如圆柱与圆锥底面积、高、体积之间,在一定条件下的内在联系是六年级学生学习中的一个难点.因此教学时自己采用直观教学与代入求值相结合的方法进行教学,指导学生动手操作,反复观察分析,做法分为如下三步:
1.将橡皮泥捏成一个底面半径为2厘米(即底面积12.56平方厘米),高为5厘米的圆柱体.
板书:已知:r=2 h=5 求S=?(12.56) V=?(62.8)
2.再将这个圆柱体捏成一个以12.56平方厘米为底的圆锥体(学生先想象这个圆锥体的形象,再按要求做)
想算结合:什么没变?什么变了?与原来圆柱体有什么关系?
(V不变、S不变、形变、H变)
板书:已知: V=62.8 S=12.56 求h锥=?(15)
15÷5=3
3.把圆锥体捏回圆柱体,再捏成以圆柱高5厘米为锥高的圆锥体;
想算结合:什么没变?什么变了?(V没变、H没变、S变)与原来圆柱体又有什么关系?
板书:已知:h=5 V=62.8 求S锥=?(37.68)
37.68÷12.56=3
通过直观教学和计算相结合,学生发现圆柱体和圆锥体之间的内在联系:
由于学生自己动手,直观教学,对所学内容,容易接受,记忆深刻,并通过教具、学具的应用,实际事例引导学生观察思考,使学生能够正确理解所学知识的含义,在理解的基础上从感知经表象到认识,从而突破教学难点.

五、以形式多样的课堂练习突出重点,突破难点

精心设计课堂练习是提高教学质量的重要保证,因为学生是通过练习来进一步理解和巩固知识的,也必须通过练习,才能把知识转化成技能技巧,从而提高综合运用知识的能力.所谓精心设计练习,关键在于“精”,精就是指在新课上设计的练习要突出重点——新知识点.围绕知识重点多层次一套一套地让学生练习.
例如:“三位数乘多位数”新课知识重点是用乘数百位上的数去乘被乘数,乘积是多少个百,乘得的积的末位要写在积的百位上.这一个新知识是在学生掌握一、两位数乘多位数计算法则的基础上来学习的,因此,设计新课练习,要紧紧围绕新课知识重点,在学生原有的知识基础上设计以下练习题:
1.完成下列各题计算:
① 314 ② 537

1570 2148
目的:集中时间和注意力放在本节课重点上.
2.计算下列各题:
(1)541×632 (2)712×431
目的:a:乘数个位、十位上数字小,节省时间
b:重点放在本节课上
c:独立完成三位数乘多位数的计算
3.选择教材上练习题:
目的:通过在前两套计算题目的基础上,总结
4.思考题:
(1)5379×8641 (2)735×1324
目的:a:起到知识渗透、迁移的作用
b:培养学生思维的灵活性
因而,要突出教学重点,还应在设计授新课的练习题上下功夫.
综上所述,教师的教服务于学生的学,教师每备一节课,要动一番脑筋,花一番心血,认真研究教学大纲,深钻教材内容,并结合学生实际,把握教材内容,弄清重点、难点,深刻理解教材意图,合理安排教学环节,精心设计课堂设问,方可找出突出重点,突破难点的方法和最佳途径.

8. 小学三年级数学中,什么是归一问题,什么是归总问题

归一问题:简单地说就是求单一量的问题,比如求速度、求单价、求单产、求效率等等。
归总问题:简单地说就是求总量的问题,比如求总价、求路程、求总产量、求工作量等等。

9. 如何确定小学数学教学中的重点与难点

如果说教学目标是确定重点的根本那么深入钻研教材,弄清教材内容的内在联系,则是确立教学重点的基础。不仅要对所教授的内容作深入地剖析,理出知识的层次与联系,还要相应地找出已学知识和后续知识与这些内容的联系,只有这样才能确定好教学重点。

阅读全文

与小学数学的归一问题的重难点在哪里相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1258
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1211
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016