导航:首页 > 数字科学 > 计算机和数学之间的关系是什么

计算机和数学之间的关系是什么

发布时间:2022-08-17 16:25:34

⑴ 计算机与数学的关系

类似于母子关系吧。
数学和物理在计算机发展中起核心作用。
数学是计算机科学的基础,准确来说,计算机只不过是数学在特定领域的一个应用。
有人说,0和1就构成这个世界。这句话意在说明数学对于人类发展和人们生活的重要性。也正因为有了数学,有了2进制,有了数据结构,有了算法等等,才会为构建计算机领域的万千世界提供了夯实的基础。

⑵ 数学与计算机有什么联系

数学和物理在计算机发展中起核心作用。
数学是计算机科学的基础,准确来说,计算机只不过是数学在特定领域的一个应用。
有人说,0和1就构成这个世界。这句话意在说明数学对于人类发展和人们生活的重要性。也正因为有了数学,有了2进制,有了数据结构,有了算法等等,才会为构建计算机领域的万千世界提供了夯实的基础

其实学习数学是为了可以更好的去学学习计算机,首先,如果学好了例如大学所学习的大学数学,离散,线性代数等,可以培养好的逻辑思维,而在学习计算机,尤其是学习计算机软件的编程的时候是非常有用的。所以学说,学好数学,可以把数学中的逻辑思维应用在计算机上。

⑶ 计算机编程跟数学有多大关系

题主你指的数学是哪方面呢?概率论?数论?线性代数?微积分?离散数学....光把这些只是翻一下看懂就要个几年了,想学会学好?对不起,可能学到胡子白半截身子入土了都不一定到你说的学好的程度。
所以对大多数人来说,在数学方面都不太可能取得什么很深的造诣。直白一点能学好数学的人太少。数学是又深奥又费解学习成本巨大需要耗费大量时间学完不用立马就忘的学科。所以说数学重要,先问问你自己能不能学会。
其次,计算机学科跟数学根本就不是一门学科,不存什么包含关系。计算机编程有自己的理论体系,很多跟数学关系不大。学好编程最重要的是对你学的编程语言的深刻理解和工具SDK的烂熟于心熟练运用。每个语言都有自己的设计理念,不存在什么好学的编程语言。
所以说,题主,你想得太远了。软件开发需要用到的知识比数学重要的有太多了。比如英语快速阅读能力,程序调试技术,网上搜索资料的能力。而数学对于大多数人来说是最难学也是最不重要的知识,基本上是学了就忘忘了就扔扔了也没感觉的那种,很多搞编程的可能一辈子也用不到数学知识。为什么?理解C++的指针和多态需要数学吗?一个复杂的系统架构也不需要半点数学知识,而你就是看不懂。
还有就是程序调试技术,很多IDE给出的出错语句非常费解,什么指针为空,数组越界,内存溢出,SDK找不到,你没经验时打死你也看不懂你的编程工具提示的是什么。这时你那高大上的数学真是P用没有,它能帮你排查错误找出程序崩掉的原因吗?我看不行吧,你还是得到论坛网络去问人家这些基本的问题。
在你担心数学好不好之前,你更应该关心编程环境怎么搭建,连IDE都搞不定不知道程序怎么跑起来你还搞什么呀,下一步就是程序基本的语法和SDK库函数的掌握,基本SDK都不知道什么意思怎么去用,如字符串函数,文件读写和数据库常用操作,这些你都不会你还有学下去的必要吗?还有更重要的更基本的程序调试技术,程序老出错老崩溃怎么办呀,哪里变量为空了内存写错了?为什么程序老编不过去呀,谁能帮帮我呀!!!这个时候你发现那牛逼的数学知识真是屁用没有,你还是感叹自己基本功底不行经验太少,这个时候打死你也不会再关心数学好不好的问题了。
如果说用到数学的大概只有3D游戏引擎,很智能的人工智能,如格斗游戏的电脑应对玩家的复杂AI,生化危机中僵尸怪物的配合商量运用策略包抄玩家和记忆功能,还有航空航天领域这样高精尖技术学科才会用到复杂一点的数学知识。而这些都是计算机专家才要掌握的内容。所以题主你是想多了,等你达到图灵的大师级别再考虑数学问题吧,在这之前,还是先关心下自己程序为什么编不过老是报错的问题吧

⑷ 数学和计算机到底有什么关系吗

计算机科学是研究信息处理的科学。计算机科学分为理论计算机科学和实验计算机科学两个部分。在数学文献中所说的计算机科学,一般是指理论计算机科学。实验计算机科学还包括有关开辟计算机新的应用领域的研究计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。有联系,但也不是太明显

⑸ 计算机到底和数学有什么关系

数学是基础学科,有丰富的数学基础可以对理解编程中的逻辑有帮助。

编程对不同的人有不同的意义:

对于一般的程序员就是代码的产出和可运行程序(数学在这里面并不是特别重要,更重要的是对各种框架的理解、熟练掌握、设计模式等)。

对于算法工程师来说,数学就很重要了(例如机器学习,密码学,计算机图形学等,当然这个对题主来说还太遥远)。

题主说的函数实际上就是为了实现目的的一种封装形式,而递归只是在函数中调用自身(当然需要终止条件)。

(5)计算机和数学之间的关系是什么扩展阅读

计算机的三大主要特点

1、运算速度快:计算机内部电路组成,可以高速准确地完成各种算术运算。当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道的计算、大型水坝的计算、24小时天气算需要几年甚至几十年,而在现代社会里,用计算机只需几分钟就可完成。

2、计算精确度高:科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。

3、逻辑运算能力强:计算机不仅能进行精确计算,还具有逻辑运算功能,能对信息进行比较和判断。计算机能把参加运算的数据、程序以及中间结果和最后结果保存起来,并能根据判断的结果自动执行下一条指令以供用户随时调用。



⑹ 数学与计算机算法有什么关系

数学是基础学科,有丰富的数学基础可以对理解编程中的逻辑有帮助。

编程对不同的人有不同的意义:

对于一般的程序员就是代码的产出和可运行程序(数学在这里面并不是特别重要,更重要的是对各种框架的理解、熟练掌握、设计模式等)。

对于算法工程师来说,数学就很重要了(例如机器学习,密码学,计算机图形学等,当然这个对题主来说还太遥远)。

题主说的函数实际上就是为了实现目的的一种封装形式,而递归只是在函数中调用自身(当然需要终止条件)。

(6)计算机和数学之间的关系是什么扩展阅读:

计算机的三个主要特征

1、运算速度快:计算机内部电路能高速准确地完成各种算术运算。当今计算机系统的计算速度已达到每秒数万亿次运算,微机也可达到每秒一亿次运算,使大量复杂的科学计算问题得以解决。例如,计算卫星轨道、大型水坝和24小时的天气可能需要数年甚至数十年,而在现代,用电脑几分钟就可以完成。

2、计算精度高:科学技术的发展,特别是尖端科学技术的发展,对计算精度要求很高。计算机控制的导弹之所以能够准确命中预定目标,与计算机的精确计算是分不开的。一般的计算机可以有十几位甚至几十位数字(二进制)有效数字,其计算精度可以从千分之几到百万分之一,是任何计算工具都无法比拟的。

3、逻辑操作能力强:计算机不仅可以进行精确计算,还具有逻辑操作功能,可以对信息进行比较和判断。计算机可参与操作数据、程序、中间结果和最终结果保存,并可根据判断结果自动执行下一条指令,供用户随时调用。

⑺ 计算机与数学之间是一种什么样的关系

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动数学发展,从某种意义上可以说是孩子长得比妈妈还高了。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大约十几年前,终于有一位大师告诉我们:不是。
第一,针对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些数学。为了直接面向应用的需要,他要提倡“具体”的数学。
第二,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,都是有用的数学!
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。

⑻ 计算机与数学关系 是什么

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分
支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动
数学发展,从某种意义上可以说是孩子长得比妈妈还高了。
但不管怎么样,这个孩子身上始终流着母亲的血液。这血液是the mathematical underpi
nning of computer science(计算机科学的数学基础),-- 也就是理论计算机科学。
现代计算机科学和数学的另一个交叉是计算数学/数值分析/科学计算,传统上不包含在理
论计算机科学以内。所以本文对计算数学全部予以忽略。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密
切,以至于它们在不少场合下成为同义词。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复
变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程
上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这
些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分
,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计
算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以
分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:
1) 集合论,数理逻辑与元数学。这是整个数学的基础,也是计算机科学的基础。
2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是
算法,而大量的算法建立在图和组合的基础上。
3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。在计算机科学中,人们惊讶
地发现代数竟然有如此之多的应用。
但是,理论计算机科学仅仅就是在数学的上面加上“离散”的帽子这么简单吗?一直到大
约十几年前,终于有一位大师告诉我们:不是。D.E.Knuth(他有多伟大,我想不用我废话了)在Stanford开设了一门全新的课程Concrete Mathematics。 Concrete这个词在这里有两层含义:
第一,针对abstract而言。Knuth认为,传统数学研究的对象过于抽象,导致对具体的问题
关心不够。他抱怨说,在研究中他需要的数学往往并不存在,所以他只能自己去创造一些
数学。为了直接面向应用的需要,他要提倡“具体”的数学。在这里我做一点简单的解释。例如在集合论中,数学家关心的都是最根本的问题--公理系统的各种性质之类。而一些具体集合的性质,各种常见集合,关系,映射都是什么样的,数学家觉得并不重要。然而,在计算机科学中应用的,恰恰就是这些具体的东西。Knuth能够首先看到这一点,不愧为当世计算机第一人。
第二,Concrete是Continuous(连续)加上discrete(离散)。不管连续数学还是离散数学,
都是有用的数学!
前面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域
包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并
行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相
交叉,而且新的课题在不断提出,所以很难理出一个头绪来。
下面随便举一些例子。
由于应用需求的推动,密码学现在成为研究的热点。密码学建立在数论(尤其是计算数论)
,代数,信息论,概率论和随机过程的基础上,有时也用到图论和组合学等。
很多人以为密码学就是加密解密,而加密就是用一个函数把数据打乱。这就大错特错了。
现代密码学至少包含以下层次的内容:
第一,密码学的基础。例如,分解一个大数真的很困难吗?能否有一般的工具证明协议正
确?
第二,密码学的基本课题。例如,比以前更好的单向函数,签名协议等。
第三,密码学的高级问题。例如,零知识证明的长度,秘密分享的方法。
第四,密码学的新应用。例如,数字现金,叛徒追踪等。

计算机的核心是计算,其本质是数学。计算机的生命是靠程序延续,算法是程序的灵魂
摘自网络

⑼ 数学与计算机的关系

计算机科学和数学的关系有点奇怪。二三十年以前,计算机科学基本上还是数学的一个分
支。而现在,计算机科学拥有广泛的研究领域和众多的研究人员,在很多方面反过来推动
数学发展。
现代计算机科学和数学的另一个交叉是计算数学/数值分析/科学计算,传统上不包含在理
论计算机科学以内。
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。这两者的关系是如此密
切,以至于它们在不少场合下成为同义词。
传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复
变,实变,泛函等等。实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程
上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这
些分支处理的数学对象与传统的分析有明显的区别:分析研究的对象是连续的,因而微分
,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计
算。人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以
分析为中心的传统数学分支被相对称为“连续数学”。

⑽ 数学和计算机科学有哪些关系

“计算机科学是研究信息处理的科学。
计算机科学分为理论计算机科学和实验计算机科学两个部分。
在数学文献中所说的计算机科学,一般是指理论计算机科学。
实验计算机科学还包括有关开辟计算机新的应用领域的研究
计算数学也叫做数值计算方法或数值分析。
主要内容包括代数方程、线性代数方程组、微分方程的数值...”

阅读全文

与计算机和数学之间的关系是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:994
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1343
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069