A. 高中数学九大函数是什么
五中基本初等函数:幂指对三角反三角,然后再是这些初等函数的复合加减乘除
B. 高中数学中的六大类函数
高中数学中的六大类函数及其定义:
1.一次函数:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数≠0,k≠0,b为常数,),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.
拓展资料:
函数(function),最早由中国清朝数学家李善兰翻译,出于其着作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
资料来源:函数_网络
C. 高中数学函数都有哪些
高中数学的函数主要是初等函数:如常数函数,一次函数,二次函数,对数函数,指数函数,幂函数,三角函数,以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数
D. 数学中的函数公式有哪些
高中数学必备公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等差、等比数列的通项公式、前n项和公式等。
公式一:同角关系
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(kπ+α)=-sinα k∈z
cos(kπ+α)=-cosα k∈z
tan(kπ+α)=tanα k∈z
cot(kπ+α)=cotα k∈z
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
六种基本函数:
函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
正弦函数:sinθ=y/r
余弦函数:cosθ=x/r
正切函数:tanθ=y/x
余切函数:cotθ=x/y
正割函数:secθ=r/x
余割函数:cscθ=r/y
E. 高中数学主要函数
高中数学主要学习幂函数、指数函数、对数函数和三角函数这四种初等函数。
F. 高中的数学函数种类有哪些
函数的分类方法很多。看你以什么标准分类。比如:
以运算的有限和无限,可以分为初等函数,非初等函数。
以函数的单调性分类,可以分为定义域上的增函数、减函数,其他函数。
以函数的奇偶性分类,可以分为奇函数、偶函数,既是奇函数又是偶函数,非奇非偶函数。
以函数的有界性分类,可以分为有界函数,无界函数。
以函数的连续性分类,可以分为连续函数,非连续函数(包括离散函数)。
以上是基于中学函数的概念(一元单值实函数)的分类。
还有大学高数的分类:
一元函数与多元函数;
单值函数与多值函数;
实变函数与复变函数。
……
G. 高中数学函数知识点归纳有哪些
高中数学函数知识点如下:
1、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
2、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
3、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
4、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
5、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
H. 高中有八种基本函数 分别是什么啊
1、一次函数:一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
2、一次函数:二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
3、反比例函数:反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图象中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
4、三角函数:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
5、幂函数:幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
6、指数函数:指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。
7、对数函数:一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
8、反函数:一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,
记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
I. 高中数学函数都有哪些
二次函数,指数函数,对数函数,幂函数,双勾函数
以及由以上各函数(包括一次函数,反比例)进行运算所得的函数。