‘壹’ 九年级数学全效 第五章 反比例函数 复习 在线等 急急急!
解:(1)把x=1,y=2代入y=(k-1)/x得k-1=2解得k=3
(2)依题意得:反比例函数的图像在每一个分支上,y随x的增大而减小;则图像在一、三像限,所以,k-1〉0,解得:k〉1,因此这个反比例函数的图像在每一个分支上,y随x的增大而减小。
(3)把k=13代入y=(k-1)/x得:xy=12,则点B(3,4)在这个函数图像上(x=3,y=4代入xy=12成立),点C(2,5)不在这个函数图像上(x=2,y=5代入xy=12不成立)。
‘贰’ 九年级上册数学书内容有哪些
九年级数学分为代数、几何两个部分。
代数内容有二次函数,统计初步二章;几何内容有相似三角形、锐角三角比、圆与正多边形三章。初三数学的学习,是以前两年数学学习为基础的,是对已学知识的加深、拓宽、综合与延续,是初中数学学习的重点,也是中考考查的重点。
相信很多同学已经体会到这样一件事,就是初一的数学比小学难,初二的数学比初一的数学更难,初三的数学已经有同学上课听不懂,盯着黑板发呆的人不少。
初三数学是以前两年的学习内容为基础的,可以用来复习、巩固相关的内容,同时新知识的学习常常由旧知识引入或要用到前面所学过的内容,甚至是已有知识的综合、提高与延续。因此在学习中,要注意前后知识的联系,以便达到巩固与提高的目的。
其实,要学好初中数学,初一的时候一定要打好基础,初二的时候成绩要稳得住,初三复习阶段需要多总结错题,这样中考才能考出理想的成绩。
为了帮助学生学好初三数学,我给大家分享一份初三数学上册的全册知识点总结,、希望这份资料能够补上孩子的不足,好好利用这份资料就会在开学考试的时候考出好成绩。正好现在有时间,好好学习吧!
‘叁’ 初中数学书有几本,分几册,共几章,每一章的名称是什么
初中数学书有6本,七年级上下两册,八年级上下两册,九年级上下两册。
七年级上下两册
有理数、整式的加减、一元一次方程、图形认识初步、相交线与平行线、平面直角坐标系、三角形、二元一次方程、不等式与不等式组、数据的收集、整理与描述。
八年级上下两册
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180°的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
九年级上下两册
学习内容:二次根式、一元二次方程、圆、二次函数、旋转、概率,解直角三角形。
(3)九上数学第五章是什么样的扩展阅读:
学生应掌握的基本技能
(1)能够运用有关相交线、平行线、三角形、四边形、相似形和圆的一些概念和性质进行论证与计算。
(2)能够使用直尺、圆规、刻度尺、三角板、量角器等工具画出图形,并能使用直尺和圆规作常用的基本图形,以及能解最简单的几何作图题。
思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;会运用数学概念、原理、思想和方法辨明数学关系。形成良好的思想品质,提高思维水平。
运算能力是指:会根据法则、公式等正确地进行运算,并理解运算的算理;能够根据问题的条件寻求与设计合理、简洁的运算途径。
空间观念主要是指:能够由形状简单的实物想象出几何图形,由几何图形想象出实物的形状;能够由较复杂的平面图形分解出简单的、基本的图形;能够在基本的图形中找出基本元素及其关系;能够根据条件作出或画出图形。
参考资料来源:网络-中学数学 (学科)
‘肆’ 九上数学
北师大版初中数学定理知识点汇总[九年级(上册) 第一章 证明(二)※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30??,这它所对的直角边必然等于斜边的一半。※有一个角等于60??的等腰三角形是等边三角形。※如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理: (注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30??,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义)<直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。ACBO图1图2OACBDEF※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO) ※角平分线上的点到角两边的距离相等。※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。角平分线是到角的两边距离相等的所有点的集合。※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。(如图2所示,OD=OE=OF)第二章 一元二次方程※只含有一个未知数的整式方程,且都可以化为 (a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。※把 (a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。※解一元二次方程的方法:①配方法 <即将其变为 的形式>②公式法 (注意在找abc时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成 的形式;⑥两边开方求其根。※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。※如果一元二次方程 的两根分别为x1、x2,则有: 。※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:① ② ③ ④ ⑤ ⑥ ⑦其他能用 或 表达的代数式。(3)已知方程的两根x1、x2,可以构造一元二次方程: (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。※处理问题的过程可以进一步概括为: 第三章 证明(三)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。菱形的定义:一组邻边相等的平行四边形叫做菱形。※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。※菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。※推论:直角三角形斜边上的中线等于斜边的一半。正方形的定义:一组邻边相等的矩形叫做正方形。※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。平行四边形菱形矩形正方形一组邻边相等一组邻边相等且一个内角为直角(或对角线互相垂直平分)一内角为直角一邻边相等或对角线垂直一个内角为直角(或对角线相等)鹏翔教图3※两条腰相等的梯形叫做等腰梯形。※一条腰和底垂直的梯形叫做直角梯形。 ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。※三角形的中位线平行于第三边,并且等于第三边的一半。※夹在两条平行线间的平行线段相等。※在直角三角形中,斜边上的中线等于斜边的一半第四章 视图与投影※三视图包括:主视图、俯视图和左视图。 三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。 主视图:基本可认为从物体正面视得的图象 俯视图:基本可认为从物体上面视得的图象 左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。※区分平行投影和中心投影:①观察光源;②观察影子。眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。 第五章 反比例函数※反比例函数的概念:一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。 (x为自变量,y为因变量,其中x不能为零)※反比例函数的等价形式:y是x的反比例函数 ←→ ←→ ←→ ←→ 变量y与x成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即 >。(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。※反比例函数图象的几何特征:(如图4所示) PBAOPBAO图4点P(x,y)在双曲线上都有 第六章 频率与概率※在频率分布表里,落在各小组内的数据的个数叫做频数;每一小组的频数与数据总数的比值叫做这一小组的频率; 即: 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。用一件事件发生的频率来估计这一件事件发生的概率。可用列表的方法求出概率,但此方法不太适用较复杂情况。※假设布袋内有m个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x条鱼,则可依照 估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是XX”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。%D%A
‘伍’ 北师大版九年级上册数学课本目录
目录如下 第一章 证明(二)
1.你能证明它们吗
2.直角三角形
3.线段的垂直平分线
4.角平分线
回顾与思考
复习题
第二章 一元二次方程
1.花边有多宽
2.配方法
3.公式法
4.分解因式法
5.为什么是1.618
回顾与思考
复习题
第三章 证明(三)
1.平行四边形
2.特殊平行四边形
回顾与思考
复习题
第四章 视图与投影
1.视图
2.太阳光与影子
3.灯光与影子
回顾与思考
复习题
第五章 反比例函数
1.反比例函数
2.反比例函数的图象与性质
3.反比例函数的应用
回顾与思考
复习题
课题学习
猜想、证明与拓广
第六章 频率与概率
1.频率与概率
2.投针实验
3.池塘里有多少条鱼
回顾与思考
复习题
总复习
‘陆’ 急求数学九年级上册期中复习提纲【我在线等啊!】
九年级数学期中复习提纲
反比例函数
一、复习目标:
(1)巩固反比例函数的概念,会求反比例函数表达式并能画出图象.
(2)巩固反比例函数图象的变化其及性质并能运用解决某些实际问题.
(3)善于用适当的函数表示法刻画某些实际问题中变量之间的关系,并结合函数图象分析简单的数量关系。
(4)学习并熟悉数形结合的方法对解决实际问题有重要的作用,用待定系数法求函数解析式是一种常用的方法。
二、知识梳理
表达式 y=kx (k≠0)
图 象 k>0 k<0
性 质
1.图象在第一、三象限;
2.每个象限内,函数y的值随x的增大而减小. 1.图象在第二、四象限;
2.在每个象限内,函数y值随x的增大而增大.
在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 =|k|
反比例函数既是轴对称图形,又是中心对称图形。
二次函数
一、 复习目标:
(1) 认识二次函数是常见的简单函数之一,也是刻画现实世界变量之间关系的重要数学模型.
(2) 理解二次函数的概念,掌握其函数关系式以及自变量的取值范围.
(3)能正确地描述二次函数的图象,能根据图象或函数关系式说出二次函数图象的特征及函数的性质,并能运用这些性质解决问题.
(4)能根据问题中的条件确定二次函数的关系式,并运用二次函数及其性质解决简单的实际问题.
(5)了解二次函数与一元二次方程的关系,能利用二次函数的图象求一元二次方程的近似解.
二、知识梳理
1、二次函数的概念:形如 的函数.
2、抛物线 的顶点坐标是( );对称轴是直线 .
3、当a>0时抛物线的开口向上;当a<0时抛物线的开口向下. 越大,抛物线的开口越小; 越小,抛物线的开口越大. 相同的抛物线,通过平移(或旋转、轴对称)一定能够重合.
4、a、b同号时抛物线的对称轴在y轴的左侧;a、b异号时抛物线的对称轴在y轴的右侧.抛物线与y轴的交点坐标是(0,C).
5、二次函数解析式的三种形式:
(1)一般式: (2)顶点式:
(3)交点式: ,抛物线与x轴的交点坐标是( )和( ).
6、抛物线的平移规律:从 到 ,抓住顶点从(0,0)到(h,k).
7、(1)当 >0时,一元二次方程 有两个实数根 ,抛物线 与x轴的交点坐标是A( )和B( )。
(2)当 =0时,一元二次方程 有两个相等的实数根(或说一个根) ,抛物线 的顶点在x轴上,其坐标是( ).
(3)当 <0时,一元二次方程 没有实数根,抛物线 与x轴没有交点.
8、二次函数的最值问题和增减性:
系数a的符号 时, 最值
增减性
a>0
最小值
时y随x的增大而减小.
a<0
最大值 时y随x的增大而增大.
相似三角形
一、 复习目标:
1. 巩固相似三角形的概念。掌握相似三角形的性质。会运用复习相似三角形的判定判断两个三角形相似。
2、会利用三角形相似,证明角相等,线段成比例,表示线段的长等。
3、能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量物体内径)等的一些实际问题。
4、能把实际问题转化成有关相似三角形的数学模型。
二、知识梳理
1.相似三角形的定义:
对应角相等、对应边成比例的三角形叫做相似三角形。
2.相似比
相似三角形的对应边的比,叫做相似三角形的相似比。
△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么△A/B/C/与 △ABC的相似比为_____1:2____.
二、三角形的识别、性质和应用
1、识别
①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似.
②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
2、性质:两个三角形相似,则:
①它们的对应边成比例,对应角相等;②它们的对应高、对应中线、对应角平分线的比等于相似比;
③它们的周长比等于相似比;面积比等于相似比的平方.
3、比例线段:
(1)比例的基本性质:如果a:b=c:d,那么 反过来:如果 那么:a:b=c:d。
(2)b是线段a、d的比例中项,则 。反过来亦成立。
4、黄金分割:
(1)如果B是线段AC的黄金分割点(AC>BC),则AC:BC= =0.618
(2)黄金三角形的作法及性质,并会推广黄金矩形的性质。
5、相似多边形的定义及性质 6、图形位似的定义及性质
圆的基本性质
圆 基本元素:圆的定义,圆心,半径,弧,弦,弦心距
的 垂径定理
认 对称性:旋转不变性,轴对称,中心对称(强)
识 圆心角、弧、弦、弦心距的关系
与圆有关的角:圆心角,圆周角
弧长,扇形的面积,弓形的面积,及组合的几何图形
圆中的有关计算:
圆锥的侧面积、全面积
一、圆的概念
1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O叫做圆心,线段OP叫做半径。
2、弧:圆上任意两点间部分叫做圆弧,简称弧。优弧、劣弧以及表示方法。
3、弦,弦心距,圆心角,圆周角,
点和圆的位置关系:
如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:
(1)d<r → (2)d=r → (3)d>r →
二、几点确定一个圆
问题:(1)经过一个已知点可以画多少个圆?
(2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上?
(3)过同在一条直线上的三个点能画圆吗?
定理:经过 确定一个圆。
三、圆的性质定理
1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧(圆的轴对称性);
2、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧
3、推论2:平分弧的直径垂直平分弧所对的弦
4、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
5、圆周角定理: 一条弧所对的圆周角等于它所对的 。
推论:1、半圆(或直径)所对的圆周角是 ,90°圆周角所对的弦是 。
2、同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。
五、弧长及扇形的面积圆锥的侧面积和全面积
1、弧长公式:
2、扇形的面积:
如何在平时提高数学成绩
1、按部就班 数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解 概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练 学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误。 定一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
快速提高数学成绩的五大攻略
攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
攻略四:记录错题,避免再犯。俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,考试当中是“分分必争”,一分也失不得。
攻略五:集中兵力,攻下弱点。每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。