导航:首页 > 数字科学 > 运筹学的数学模型有哪些优缺点

运筹学的数学模型有哪些优缺点

发布时间:2022-08-21 02:48:20

1. “运筹学”有哪些方面的应用

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。

现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。

运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。

但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

各分支简介

数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。

数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。

这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。

线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。

非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。

排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。

排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。

因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。

排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。

对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。

最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。

搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。

运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

2. 什么是最小元素法,是运筹学当中的,请说明缺点,谢谢!

这种方法的基本思想就是就近供应,即从单价运价表中最小的运价开始确定供销关系,然后次小。一直到给出初始基可行解为止。(选自运筹学书本)
缺点就是只能是次优。

3. 常用的数学模型有哪些另外运用数学建模解题的关键点有哪些

首先,常用的数学模型有优化模型(主要是统计回归,包括对数据的处理,用到拟合,差值等等),微分方程模型(常微较多,偏微不常用),差分方程型(就是离散型,这类不能求导微分等等),概率论模型,还有什么图论啊 一些乱七八糟的 (以上我说的都是一些很基础的模型,复杂的模型差不多都是基于简单模型)
数学建模主要有三步,1.把实际问题转化成数学问题(这一般是竞赛前两天的工作);2.用数学知识和计算机知识(主要是MATLAB)解决数学问题;3.整理和完善,论文写作
我认为数学建模最重要的一步就是把实际问题转化成数学问题这一步,因为后面两步往往是不难的。
关键点有 1头脑要灵活一点,要大胆的想,考虑的因素要全面一点,但是呢,不能想出一个模型就马上建模,因为要考虑很多问题,比如是否可行(主要是实际的问题,比如合作模型中,合作中每个人得到的利益要大于等于没有合作时原来每个人的利益),比如建立的数学模型是否容易解决(比如你建立了一个常微分方程组,这个问题一般情况下好像数学家都还没给出解决,所以可想而知你和计算机能不能解决了,这个时候你应该考虑把问题巧妙地转换一下或者简化一下)
关键点之2,要找到实际问题之中和核心问题,然后由这个或者这几个核心(最好不要太多核心)来拓展。比如火箭三级助推这个问题,它的核心问题是对火箭质量改变规律的探究。然后呢,做完了核心问题的研究以后,想想实际的问题。比如,还是火箭助推这个问题,发现了助推器越多越好这个规律后,是不是就要用无穷级助推呢?显然不是,这就是后续的最优化问题。
你可以找个班去听听,或者借本书看看。(主要推荐姜启源的《数学建模》),然后自己试着建模,慢慢来。然后学一些知识,数学当然不能少(主要你要学运筹学,最优化等等,如果你想在建模中脱颖而出的话),还有要早点组队磨合,做好分工与合作。
论文一般没什么,主要就把你的思路清晰简洁的表达出来,结合图形,表格等等,然后语言要严谨,用词准确,能生动就更好了。(当然美国的数模竞赛还要你英语水平比较高才行)你可以去研读一些优秀论文,对你帮助很大的。
希望我能帮到你~

4. 数学建模中灵敏度分析怎么用有什么优缺点

因此,假设条件成为了建模过程中一个影响模型好坏的影响因素,灵敏度分析就是在模型建立后,对假设条件变化,检验模型的优劣性
一般来说Lingo做出来的灵敏度分析能够达到一个比较理想的程度,不过还是要根据模型本身来研究,建议你在开始之前先学习一下《数值分析》,对建模的灵敏度分析很有用哈,再根据《数值分析》的方法,对M-C(蒙特卡罗)方法进行灵敏度分析,你会很快掌握~~~
建议使用的数学工具还有:MATLAB,SPSS

5. 线性规划模型具有哪些特征

线性规划问题的形式特征,三个要素组成:
1、变量或决策变量;
2、目标函数;
3、约束条件。
求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。
为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。
这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。



(5)运筹学的数学模型有哪些优缺点扩展阅读:

线性规划建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。
2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。
3、约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
参考资料来源:搜狗网络-线性规划

6. 运筹学运输问题模型的特点有哪些

运筹学之运输问题
主讲人:罗九晖

§3.1 运输问题的基本概念
◆运输问题是研究物资调配的学问,这是物流管理

的核心问题之一。尤其是企业到达一定规模之后, 拥有了在广大空间上资源配置的自由度,可以通 过优化多个供方与多个需方之间的匹配关系,使 整体的物流效率最高。

◆一般的运输问题是解决如何将某种物品从若干产 地(供应地)调运到多个销地(目的地),在每个 产地的供应量、每个销地的需求量和各地之间的运 输单价均已知的前提下,如何在满足需求条件下确 定一个运送货物的最佳路径(总的运输成本最小)。

§3.2 运输问题的数学模型
例:某公司从两个产地A1、A2将物品运往三个销地B1、 B2、B3,各产地的产量、各销地的销量和各产地运 往各销地每件物品的运费如下表所示,问:应如 何调运可使总运输费用最小?
A1 A2 销量 B1 6 6 150 B2 4 5 150 B3 产量 6 200 5 300 200 总产量=总销量

运输问题的数学模型
解题思路:①明确此问题属于供销平衡问题;

②确定决策变量,写出满足产地产量的约束条件;
③写出满足销地销量的约束条件; ④写出使运输费用最小的目标函数 ⑤利用计算机求解。

解: 设 xij 为从产地Ai运往销地Bj的运输量,得到下列 运输量表: 销地 B1 B2 B3 产量 产地 A1 x11 x12 x13 200 A2 x21 x22 x23 300 150 150 200 销量

运输问题的数学模型

Min f = 6x11+4x12+6x13+6x21+5x22+5x23
S . t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 最优解如下 x12 + x22 = 150 起 至 x13 + x23 = 200 发点 1 xij≥0(i=1,2;j=1,2,3)
-------1 2 50 100

销点
2 ----150 0 3 ----0 200

-----

此运输问题的成本或收益为: 2500

§3.3运输问题的基本特点
◆一般运输问题的基本特点: (1)有多个产地和多个销地; (2)每个产地的产量不同,每个销地的销量也不同; (3)各产销两地之间的运价不同; (4)如何组织调运,在满足供应和需求的前提下使总运输费 用(或里程、时间等)最小。 ◆运输问题的数学模型的系数矩阵的基本特点: (1)共有m+n行,分别表示各产地和销地;m,n列,分别表 示各决策变量; (2)每列只有两个 1,其余为 0,分别表示只有一个产地和 一个销地被使用。

§3.4产销不平衡的运输问题
产销不平衡问题的处理方式:
产销不平衡问题向产销平衡的问题转化

具体措施:
增加虚设的产地和产量或者增加虚设的销地和销 量

经济意义:
虚设的产地(或销地)可以将这些产地的“产品” 运往各销地(或各地的产品运往这些销地)。令这 些产地或销地运输路线上的运价为0。因此,虚设的 销地相当于在产地设了一个库房,虚设的产地相当 于在销地给了一个空

7. VAR模型优缺点和主要作用有哪些

一、VaR模型的优点如下:
1、 VaR模型测量风险简洁明了,统一了风险计量标准,管理者和投资者较容易理解掌握。
风险的测量是建立在概率论与数理统计的基础之上,既具有很强的科学性,又表现出方法操作上的简便性。同时,VaR 改变了在不同金融市场缺乏表示风险统一度量, 使不同术语(例如基点现值、现有头寸等) 有统一比较标准, 使不同行业的人在探讨其市场风险时有共同的语言。
另外,有了统一标准后,金融机构可以定期测算VaR值并予以公布,增强了市场透明度,有助于提高投资者对市场的把握程度,增强投资者的投资信心,稳定金融市场。
2、可以事前计算, 降低市场风险。
不像以往风险管理的方法都是在事后衡量风险大小,不仅能计算单个金融工具的风险, 还能计算由多个金融工具组成的投资组合风险。综合考虑风险与收益因素,选择承担相同的风险能带来最大收益的组合,具有较高的经营业绩。
3、确定必要资本及提供监管依据。
VaR为确定抵御市场风险的必要资本量确定了科学的依据, 使金融机构资本安排建立在精确的风险价值基础上, 也为金融监管机构监控银行的资本充足率提供了科学、统一、公平的标准。VaR 适用于综合衡量包括利率风险、汇率风险、股票风险以及商品价格风险和衍生金融工具风险在内的各种市场风险。因此, 这使得金融机构可以用一个具体的指标数值(VaR) 就可以概括地反映整个金融机构或投资组合的风险状况, 大大方便了金融机构各业务部门对有关风险信息的交流, 也方便了机构最高管理层随时掌握机构的整体风险状况, 因而非常有利于金融机构对风险的统一管理。同时, 监管部门也得以对该金融机构的市场风险资本充足率提出统一要求。

二、VaR的应用主要体现在:
1、,用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VaR方法作为金融衍生工具风险管理的手段。利用VaR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VaR限额,以防止过度投机行为的出现。如果执行严格的VaR管理,一些金融交易的重大亏损也许就可以完全避免。
2、用于业绩评估。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标。
3、估算风险性资本(Risk-based capital)。以VaR来估算投资者面临市场风险时所需的适量资本,风险资本的要求是BIS对于金融监管的基本要求。下图说明适足的风险性资本与 VaR值之间的关系,其中VaR值被视为投资者所面临的最大可接受(可承担)的损失金额,若发生时须以自有资本来支付,防止公司发生无法支付的情况。

温馨提示:以上内容仅供参考。
应答时间:2021-02-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html

8. 运筹学和数学建模的区别实际应用中哪个更有用

学运筹学的时候会学到数学建模,应该是相交的关系吧。
运筹学还有博弈论,对偶规划,分配问题,运输问题,最短路,最大流最小截集…………
然后会说有这个那个数学模型…………

9. 运筹学特点

运筹学的特点是:运筹学已被广泛应用于工商企业、军事部门、民政事业等研 究组织内的统筹协调问题,因此,它的应用不受行业、部门的限制;运筹学既对各种经营进行创造性的科学研究,又涉及到组织 的实际管理问题,它具有很强的实践性,能向决策者提供建设性意见,并能收到实效;它以整体最优为目标,从系统...

阅读全文

与运筹学的数学模型有哪些优缺点相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:993
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068