❶ 课堂教学中怎样讲解数学习题
第一步:用孩子听得懂的例子来说明核心点。
老师提问一个小朋友:“XXX,你愿意把你的铅笔借给我吗?
小朋友回答:“没问题,拿去吧。”
老师:“XXX,那你愿意把橡皮也借给我吗?”
小朋友回答:“可以的,我还有一块呢,拿去吧。”
老师接着问同学们:“是不是XXX特别好说话啊,有一类小朋友的性格就像XXX一样,特别好说话。”
接着老师又问一个同学:“XXX,你可以借我一根彩笔吗?”
XXX回答:“可是我就一杆彩笔。”
老师说:“那我用粉笔和你交换吧。”
XXX回答:“好吧,交换是可以的。”
老师接着和同学们说:
“当我们借别人也很需要的东西的时候,有的小朋友没那么好说话,可能交换才能成交。这两类小朋友都做得很棒,没有好坏,但是的确成交的条件不一样,对吗?”
小朋友都听得津津有味,也在例子中明白了有两类人,成交条件不同。
接着老师说:
“在我们加、去括号的时候,括号前面的加号就是好说话的小朋友,减号就是不好说话的小朋友。”
所以,大家和我一起说:同级运算中,括号前是“+”,加括号或去括号时,括号里的符号不改变;若括号前是“—”,加括号或去括号时,括号里的符号要变号。”
第二步:用例题和练习反复巩固知识点。
尽管老师铺垫了这个生活中的例子,但是对于孩子来说他们记住的仅仅是加号、减号对于括号的加、去是不同的,必须接着要落到例题去巩固,在练习中记忆是最好的巩固。
因为课堂时间有限,老师大概讲了4-5个难度不同、情况不同的例题,还同时让孩子们现场做了几道练习题。板书写的非常好,把思路和格式都呈现的很好。
有一点很关键,一定要让孩子当场练习,我看老师会检查每个孩子的书写、过程和结果,当场指出问题,孩子的很多思维是短暂记忆的,要当场加强。
第三步:关键的知识点掌握后,用口诀让孩子们简单记忆。
本来我以为这个知识点就讲完了,剩下的就靠课后练习了,结果老师又和大家说:“我给大家编了一个口诀,来考考大家,天空飘来五个字,下一句是什么?”
没想到孩子们还都挺社会,齐声答道:“这都不是事!”
所有孩子和听课的家长都笑了,大家别小看这个笑,印象深刻的场景是最容易让人记忆的。
老师接着说:“我给大家改编了一个口诀,这是我们下节课的暗号哦,大家一定要记住,以后大家遇到加、去括号的巧算,就抬头看看,记住这句话:天空飘来五个字,加不变减变。”
我们家长立刻领悟了老师的用心,孩子们也齐声了背了几遍。技巧、知识点的有效记忆对于学习效率是很关键的。
下课后回家路上,我问图图:“还记得下节课和老师的暗号吗?”
图图大声回答:“天空飘过五个字,加不变减变。”
-“真棒!你能简单给妈妈说说这句话的意思吗”
-“就是遇到要用括号巧算的时候,无论是加括号还是去括号,括号前是加号,里面的符号不变号;如果括号前是减号,里面的符号要变号。”
❷ 数学题怎么解
数学是推理工具,初等数学可解决的问题主要有两类:证明命题成立,推导未知量的具体数值
下面分别论述如何利用数学解决问题。
命题证明方法有三种:
1,常规证明方法,从公理或已知的命题推导出该命题成立,即证明该命题是已知公理的子命题。要点是要理清命题以及给出条件的含义,找出该命题的等效含义和条件,最好是转化为数值等式关系,然后符号演算,这种演算方法通用性强,在一些特殊情况下也转化为直观的几何关系,通过直观的几何关系证明,但几何的方法需要灵感,不通用。
2,归谬方法,假设该命题不成立,推导出矛盾的命题,从而证明该命题成立。适用的场合比较有限,不作介绍。
3,递推,初始命题成立,如果第n个命题成立,则第n+1个命题也成立,从而证明所有命题成立。这种证明局限性强,也不作介绍。
下面先拿最典型的勾股定律,说明常规的推导的证明方法: 证明勾股定律成立,
分析过程:
1. 明确要证明的命题:勾股定律是直角三角形的斜边平方等于另两边的平方和
2. 明确定义:直角三角形的定义是其中一个角是直角
3. 找等效含义,转化为符号演算:
4. 边成的平方等效于正方形的面积,于是可以考虑利用直角三角形的特点拼接图形,有很多种拼接方法,但都不好想出,都属于灵光一现的想法,不具有可复制性,这里不作介绍。
5. 换个通用思路,勾股定律既然是边长数值间的关系,可以考虑直角三角形有什么独有特点让边长数值间发生关系,用等式表达,然后数学演算,转化为平方的关系。这种思考方法适用任何场合,可以逐步思考,人人都能掌握。让边长数值发生关系,只能利用相似三角形的边长比值相等,于是考虑构建相似三角形,因为一定要把直角利用上才会反映出直角三角形的特性,自然想到从直角处,引垂直斜边的辅助线。
很容易证明:新生成的两个直角三角形都与原来的大直角三角相似,这也是直角三角形的特性。用数值等式描述相似性,多了3个变量,c1,c2,h 需要3个等式消元,要推导a, b, c间的关系,还需要第4个等式关系,所以总共需要4个等式:
下方小三角形与大三角形相似:
b/c = c2/b
h/a = b/c
上方小三角形与大三角形相似:
a/c = c1/a
h/b = a/c
把c1,c2,h当成变量,任意用其中3个等式,求解出它们的表达式,带入剩余还没用到的第四个等式,变换等式即为:
a平方 + b平方 = c平方
这种关系等式演算的方法,又叫做方程的方法,适合大多数场合,最重要的数学内容。方程方法的用处除了证明命题外,更主要的用处是推导未知量的具体数值。在简单的场合,仅仅算术思维也能求解,但稍微复杂的场合,方程是唯一的求解方法。
方程的使用步骤:
1,搞清楚题目中的条件,已给出数值的含义,暗含的数值。把要求解的未知量用简单易懂的符号代替,包括要求解的未知量和可能需要的未知量。
2,针对某个物理量,两两找出数值间的等式关系,一直到等式的数量不少于未知量的数量为止。
3,用数学演算率转换等式,两边同时加减乘除,开方开根,微分积分,项式展开等,一直到单独的未知量和某个具体值的等式关系,即求解。
举例说明方程的使用方法:
例子1(小学的数学题):
某管道工程由甲乙两工程队施工,单独施工分别要用10天和15天,如果两队两端同时施工2天,然后由乙队单独完成剩下的工程还需几天完成?
我们先用直接的算术推导方法做:工程量为1,甲乙每天可完成的量是 1/10, 1/15. 同时施工两天后还剩 1 - (2/10 + 2/15), 剩余的由乙队单独施工,还需用的天数既是 前面的剩余数 除以 1/15 。
这种推导方法需要稍微复杂的思维过程,简单的,可以有多个角度思考,复杂的,常常只有一个思路可行,想不到就做不出。
现在我们用方程的方法,完全不需要思考,只需考虑数量关系即可,然后数学演算即可得出需要的答案,而且数量关系可以从不同的角度考虑,都是等效的:
还需用的天数为未知量,符号记作x天。
方法一: 2天共同完成的工程量加x天乙队完成的工程量等于1, 即
2/10 + 2/15 + x * 1/15 = 1
方法二: 甲乙分别完成的工程量和等于1,即
2/10 + (2 + x) * 1/15 = 1
方法三: 剩余的工程量即为乙队x天完成的量, 即
1 - (2/10 + 2/15) = x * 1/15
可以看出用方程的方法可以从不同角度描述出数量关系,非常容易想到,然后再用规则演算得到解。而用思维直接推导,即算术方法,就稍微有一定的难度。这个例子是非常简单的应用题,也可以用算术的方法想出,但更多的应用题再聪明的脑袋也不能想出算术的思路,只能用方程的方法列出所有的数量关系式,组成方程组,然后演算,列关系式要做到不能缺失,否则做不出答案来,关系式有重复的在演算时会发现,直接去除多余的关系式就行了,不影响演算。
例子2,稍微难点(依然是小学的数学题):
某铁路桥长1000米, 一列火车桥上通过,火车刚上桥到完全通过的时间是1分钟,整列火车在桥上的时间是40秒,请求出火车长度和速度。
用算术的思路就很难想出
现用方程的方法: 假设火车速度是x米/秒, 长度是y 米。
这里面有3个数值: 桥长1000米,过桥用时1分钟,整列火车在桥上的时间是40秒,我们列关系式只要两两地考虑关系。
先1000米和1分钟: 1000 = 60 * x – y
再1000米和40秒或1分钟和40秒,那一对容易表达关系用哪个。
1000 = 40 * x + y 或 (60 – 40)* x = 2 * y
三个方程用其中2个就完全描述出关系了,三个都用就重复了(任意2个可以推导出第三个关系式)。如果判断不出是不是重复就都列出,反正运算时可发现,不影响求解。
针对这些简单的应用题,我们在演算方程或方程组时其实每步演算都有实际的意义,但在复杂方程的演算中,每步的演算大部分没有实际的物理意义对应,纯粹是数学规则的应用。所以有些高深的物理问题可能只能用数学方法才能发现和解释。
这里再强调下应用题转化为方程或方程组的问题,这个是解题的关键。把要求解的值设为符号x,y ,z等,把题目中的说到的数值或暗含的数值和含义写出来,注明含义,然后拿出其中的两个的数值考虑其关系,针对某个物理量,把其他量引入,列出数量关系式即方程,一直到所有数值都用到为止,然后把几个方程放在一起利用数学演算求解,方程有实质重复的没关系,演算时发现再去除。这种解题步骤,不需脑子多聪明,不需脑子同时考虑到多种情况,只要一个一个地分别考虑问题然后列出关系式,最后丢开实际场景只是数学运算即可。
例子3,(高中的知识水平):
敌军阵地在前方20公里处,我方大炮的出膛速度是1000米/秒,求打击敌方时炮管仰角应是多少。
用算术思维无法想出答案,只能用方程的方法。
仰角设定为y,这里有两个数值20公里,1000m/s,标明其物理含义,然后两两找数量关系,组合随意,根据物理意义,数量关系一定是同一个物理量间的关系。
仰角y和距离20公里的关系: 考虑空间距离上的关系, 仰角x导致炮弹在落地时水平方向飞行了20公里,这时就必须另外引入飞行的时间t,所以关系式为:
1000 * cos(y) * t = 20,000
距离20公里和速度1000m/s的关系: 上面已经考虑了距离上的关系,所以这次只能考虑其他物理量上的关系,这个例子中涉及到的物理量还有时间,速度,我们可以随意选择,如果发现和已列的关系式等效,就换另一个,这里选择速度是和上述的距离关系式等效,所以只能选择时间:水平飞行20公里的时间和炮弹落地的时间相等,
20,000/(1000 * cos y ) = 2 * 1000 * sin y / g ,g是重力加速度9.8 m/s/s
两个方程,两个变量,按数学演算规则就很容易求解出仰角y的具体值。
例子4,(高中知识)
敌方炮弹来袭,我方雷达测量出相隔1秒的飞行炮弹的三个位置:分别是(X1,Y1,Z1)=(20km, 10km, 10km),(X2,Y2,Z2)=(19km, 9.9km, 10km) ,(X3,Y3,Z3)=(18km, 9.7km, 10km) , X,Y,Z分别表示水平位置,高度,侧向。问敌方大炮在何处。
先明确位置的含义:炮弹在一定仰角下射出,在重力作用下飞行,在某个时刻被我方雷达捕捉,相距1秒测量的三个位置坐标。用符号代替未知量,假设敌方大炮位置为(X0 Y0, Z0),需要用到的仰角为a, 炮弹出膛速度为V,飞行到位置一的时间为t,位置1的炮弹下落速度为V1,位置2的下落速度为V2。
先看水平方向的位置关系:
X1-X2=V * COS(a) * 1
X1-X3=V * COS(a) * 2
X0-X1=V*COS(a) * t
再看垂直方向的位置关系:
Y1-Y2 = 0.5 * V2^2 /g - 0.5 *V1^2 /g
Y1-Y0=0.5*V1^2/g
落下速度的关系:
V2-V1=g * 1
V1= (t-V*SIN(a)/g)* g
7个未知量,7个关系等式,所以可以求出7个未知量,若3个位置Z值不同,就多列一些Z方向上的侧向位置关系等式,仰角要分解到两个平面上的夹角,等式只是稍微复杂些,同样可以求解出Z0的值。这样敌方大炮的位置(X0,Y0,Z0) 就能确定,就可以根据例子3调整我方大炮仰角反击,消灭对方。
这个例子,如果不用方程的方法,没有任何办法求解。而方程的办法只需按步骤考虑,每步都很简单,不需多深的思考,不需要多高的智商,人人都能办到,尤其是演算时,完全是固定的套路,而且可以让电脑代劳。
人脑功能强大,但缺陷也很明显,记忆力有限,不能长程推理,概念容易变化,不能同时考虑多个因素。数学工具恰好可以克服这些缺陷,用符号代替数量或极度抽象的概念,从而保证推理过程中内涵和外延不变化,两两找出关系等式,然后只按少数的演算规则变换等式,最终就能得到未知量的确切值,这种推理方法不需记忆,不需动脑,可以纸上演算,人人都可学会。随着信息技术的发展,现在数学演算的过程已经有了多款优秀软件解决,更进一步降低人脑的负担,只需把因素间的数量关系输入电脑即可求解。
可以说科学的发展完全依赖数学推理工具。现代人只有掌握基础的数学工具,才能理解科学和技术。尤其是针对复杂的问题,关系等式常常是变化率间的关系,即微分方程,推理完全是数学演算,理解变得与直觉无关,只能从数学演算规则上理解。如果又是多个变量的偏微方程,复数表示的物理矢量,理解上更是如此。
❸ 做数学题时怎样才能最好的理解题意
做数学题时,要准确地理解题意,最好的方法就是理论联系实际。
你可以把题目中所涉及到的问题与身边 或 生活中你所熟悉的事例进行对比。
因为你对生活中熟悉的事例理解深刻,
这样可以帮助你正确理解题意,并能进一步帮助你建立起正确的解题思路。
希望以上回答能对你有所帮助。
❹ 数学解释题法.
倒写相加:等差数列求和公式的推导过程
错位相减:等比数列求和公式的推导
拆项相消:数列中裂项用 例如:1/(n(n+1))=1/n-1/(n+1)
❺ 如何讲解小学数学应用题
小学生讨厌是因为他们听不懂,但只要一明白,绝对是一通百通。
我是一名学生,我结合了我们小学的奥数老师,初中的奥数老师以及我现在的老师的教学方法,结出下列结论:
1可先开始做一些简单的数学游戏,使同学们热热身,如二十四点等。
2开始讲题时,先给他们几分钟看题,运算一下。
3首先要弄清楚题目给我们的信息(关系式等),用简要的代号、箭头、字符在黑板上表示出最重要的资料。使得题目清晰。
4知道题目要问我们什么时,让老师与同学一起去寻找题目的突破口和解题的思路。最主要让同学们自己去摸索,老师只起到一个辅导纠正的作用。如果出现了不同的答案,就让同学们自己辩解自己的为什么是对的,对方为什么是错的,可以训练学生们表达能力和整理思路。这样也会产生一个对立的状态,中立的孩子也会在其中分辨出哪个是对的哪个是错的,并发表自己支持哪一边。这这种活跃的环境会使不思考的孩子随之一起开动脑筋。
5让同学们寻求不同的方法,不同的思维,发散性思维对学生来说是很有益处的。不发言的孩子也会随之学到跟多的知识,就像交换苹果的故事那样。
6如果是一个很深奥的题目,就由简到深,不妨从画图开始,举个简单的例子去启发他们。在一步步的,简单的题目到深奥的题目。
7讲完例题后,在把做题思路从新再讲一遍,理清大家的思路。
8学完一个例题,做一些小小的练习题,这不仅可以增加印象,还可以让学生们发现那里还不过关。
❻ 如何帮助学生理解数学题意
理解题意比分析数量关系更重要——谈小学数学解决实际问题分析与策略
解决实际问题是新课标小学数学教学的重点,也是难点。每次练习或测试时,有不少学生倒在了解决实际问题之中。怎样攻破这个难点?长期以来众说纷纭,一直没有找到满意的解决办法。不少教师认为解决这个问题要找出其重难点,才能有的放矢,对症下药。找出重难点就是分析数量关系。从理论上说,这个观点很有道理,解决实际问题无非是给出一些已知量,要求未知量。而已知量之间、已知量和未知量之间存在一定的数量关系,把它们一一弄清楚,未知量就会水落石出了。然而,教学实践的结果果真如此吗?
通常我们对解决实际问题的教学一般分为四步:读题和审题、分析数量关系、列式计算、解答。读题和审题通常很简单,一般都是读题后找出已知条件和问题。重头戏就是分析数量关系,教师运用各种分析方法(找关键词、画线段图等),对数量关系一步一步地进行详细的分析和逻辑推理,甚至画出“方框图”用箭头表示推理过程。最后引导学生列式解答。
笔者也教学了十几年的解决问题,通常也是按这种模式教学,表面上看效果还不错,但考试的结果往往令人吃惊:课堂上多次讲过的同类型的试题,考试时却有为数不少的学生做得不对。原因何在?学生是怎样解题的?他们真正难点是分析数量关系吗?
苏霍姆林斯基曾经就这个问题进行过深入调查研究,得出的结论是:学生之所以不会解决问题,竟是由于他们不会把题目流利地、有理解地读出来。他们不能把一句话作为统一的整体来感知,更不能前后连贯地、系统地全面理解题意。
与大师所见略同,我国小学数学教育专家邱学华
先生也曾指出:解决实际问题教学的关键不是分析数量关系,而是理解题意。其实,理解题意是分析数量关系的基础,题意不清楚,数量关系从何谈起?题意理解不透,数量关系怎能分析正确?
其实,理解题意的关键就是“审题”,大多数教师在教学时往往只是简单地读一遍,然后问:已知条件是什么?问题是什么?学生将题目中的有数据的句子找出来也就是已知条件,将有问号句子找出来就是问题,教师也就认为学生“理解”了题意。整个过程也就一分钟左右。如笔者听过一位教师上“相遇问题”的公开课,在教学完例题后出示一道练习题:甲乙两个工程队合修一条长1160米的公路,甲队每天修60米,乙队每天修70米,甲对先修120米,修完共需几天?在学生做这道题前,教师还是像教学例题一样,让学生进行了“审题”,问了“已知条件”和“问题”。然后让一位优等生上台板演,结果这位学生列式是:(1160—120)÷(60+70)=8(天)。显然这位同学所算的时间没有包括甲先修120米
的时间,因而不合题意。这充分说明了能答出“问题”是什么,并不见得就理解了“问题”。正确的应该是(1160—120)÷(60+70)+ 120÷60 = 10(天)。
笔者今年所带五年级两个班,所任教的教材是人教版小学数学五年级上册。我在两个班进行实验教学,一班采用理解题意的方法,二班采用分析数量关系的方法。在教学“小数乘法”和“小数除法”实际问题时,我采用以下教学:
一班:
1. 把题目默读几遍。
2. 不看题目,在脑子里回忆这道题。
3. 用自己的话复述题目。
4. 尽量画一张图来表示题意(只要求画出表示题意就行)。
二班:
1. 把题目读一遍,找出已知条件和问题。
2. 分析数量关系(重点)。
3. 列式计算并解答。
在教学“实际问题与方程”时,为了让学生理解题意,我尝试让学生在对比中(方程法和算术法)理解题意。找出算术法和方程法解决实际问题的区别和联系,即区别在哪?联系在哪?哪些题适合用方程解,哪些题适合用算术解?具体如下表:
方 程 法
算 术 法
例1
解:设学校原纪录为x米。
原纪录+超出部分=小明成绩
x +0.06 = 4.21
小明成绩—超出部分=原纪录
4.21—0.06=4.15(米)
例2
解:设共有x块黑色皮。
黑色皮的块数×2—4=白色皮块数
2x—4 = 20
(白色皮块数+4)÷2=黑色皮块数
(20+4)÷2 = 12(块)
例3
解:设苹果每千克x元。
苹果的总价+梨的总价=总价钱
2x + 2.8×2 = 10.4
或(x + 2.8)×2 = 10.4
(总价钱—梨的总价)÷苹果的数量 =苹果的单价
(10.4—2.8×2)÷2 = 2.4(元)
例4
解:设陆地面积为x亿平方千米,则海洋面积为2.4x亿平方千米。
海洋面积+陆地面积=地球表面积
x + 2.4x = 5.1
地球表面积÷(1+2.4)=陆地面积
(把陆地面积看成单位“1”)
陆地:5.1 ÷(1+2.4)=1.5(亿平方千米)
海洋:1.5×2.4=3.6(亿平方千米)
或5.1—1.5 =3.6(亿平方千米)
例5
解:设两人x分钟后相遇。
小琳骑的路程+小云骑的路程=总路程
0.25x + 0.2x = 4.5
总路程÷速度和 = 相遇时间
4.5÷(0.25 + 0.2)=10(分钟)
教学时,学生畅所欲言,一致认为:顺着题的思路去理解,中间过程中有未知量就可以用方程解决,列方程时,等量关系是不变的。在教学完方程后,我特意增加了一节课,专门和学生探讨算术法和方程法解法的区别。如出示一组题:
1.老师买了一支钢笔花了15元,买一本书花了12元,一共花了多少元?
2.老师带了27元,买了一本书后还剩15元,一本书多少元?
我让学生顺着思路去理解,怎么理解怎么列式。学生列出的式子是:1. 12+15 = 27, 15+12 = x。2. 25—15 = 12, 25— x = 15。
在期末测试中,一班的平均成绩明显要比二班平均成绩高,其中解决实际问题的均分就要高4分。而在最后一道试题第(2)和(3)小题比较难,一班得分率比二班得分率明显高好几个百分点。试题如下:2012年7月1日起
铜陵市实施阶梯电价,收费标准如下:
类别
用电量(千瓦时/户·月)
电价标准(元/千瓦时)
一档
180以内
0.56
二档
180—350
0.61
三档
350以上
0.86
(1)小明家上月用电量为250千瓦时,电费是多少元?
(2)小丽家上月用电量为400千瓦时,电费是多少元?
(3)小刚家上月交电费是230.3元,他家上月用电量是多少千瓦时?
第(1)小题的题意是小明家用电量为二级阶梯,电费是一档全部价格+二档部分价格,列算式为180×0.56 +(250—180)×0.61=143.5元;第(2)小题的题意是小明家用电量为三级阶梯,电费是一档全部价格+二档全部价格+三档部分价格,列算式为180×0.56 +(350—180)×0.61 +(400—350)×0.86=247.5元;而第(3)小题则是知道电费算用电量,理解此题的前提就是要知道电费230.3元的用电量是几级阶梯,那就要先算出一档全部价格+二档全部价格:180×0.56 +(350—180)×0.61=204.5元,而230.3元>204.5元,也就是230.3元的用电量是三级阶梯,一档用电量+二档用电量+三档部分,算式为:180+170+(230.3—204.5)÷0.86 = 380(千瓦时)。
经过这一学期的教学实验,结果发现一班的孩子大都不需要老师分析数量关系就能解出题目。他们在解答实际问题时,理解题意和分析数量关系并不是分开的,而是互相融合的。而这一过程的基础就是他们能正确地、熟练地理解题意。
教学实践表明:理解题意是解决实际问题的关键。解决实际问题教学应重点放在理解题意上,教师在教学时要创设学生易于理解的问题情境和教学方式。
❼ 数学应用题怎么理解解题
解数学应用题的一般步骤是这样的:
第一,审题,将应用题中的已知条件列出,未知问题搞清楚。
第二,分析题目中的等量关系或不等关系,比如行程问题等。
第三,根据己分析出的关系列方程或方程组或不等式或不等式组。
第四,解方程,方程组或不等式,不等式组。
第五,检验解出的结果是否符合题意,实际意义,进行取舍。
第六,最后解答结果。
这样就解答完一道数学应用题了。
❽ 怎么样理解数学题
第一:掌握技巧
第二:多做多练、多听解别人的方法(因为自己的方法不一定是最好的,或许你的方法还有误,听取别人的、掌握其精髓、改进自己的方法,如果错的要改正过来),还要多思考(你要学会从多方面思考问题,这样才能更进一步提高自己)
第三:在做任何题目、做完之后要反复检查(这样才减少错误)
我能说的只有这些,希望能帮到你。