导航:首页 > 数字科学 > 一种数学算数是什么

一种数学算数是什么

发布时间:2022-08-26 05:06:30

⑴ 算术是什么算术代数几何是算术吗

算术就是数字的计算,计算数字的大小,面积,体积的大小,数字之间的运算方法,统称是数学,内容很多,算术,代数,几何是算术中的一种,即数学中的一种计算方法。

⑵ 数学算数有什么妙算

某商品原价800元 标价1200元 要保持利润率不低于5% 至多可以打几折

不等式ax>a的解集为x<1 则a的取值范围是
某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂利润至少是多少?
.在“我与奥运”知识竞赛中,共有20道题,每一道题答对10分,答错或不答扣5分,李明至少要答对多少道题,得分才不少于80分??
小明的妈妈带了100元钱去超市购物,她用了50元买床上用品,30元给小明买书包.如果她再买3千克香蕉,则她所带的钱就不够了;如果她再买2.5千克香蕉,则还有余钱,若香蕉的单价是一个整数,求证香蕉的单价.
(1)为了迎接2008年市女足比赛,市足协举办了一次足球比赛,其积分规则及奖励方案如表: 胜一场 平一场 负一场
积分 3 1 0
奖励 1500 700 0
当比赛进行到12轮结束(每队均需打比赛12场)时,A队共积分19分。若每赛一场,每各参赛队员均可得到出场费500元。设A队胜X场,负Z场,其中参赛一名队员所得奖金与出场费的总收入为W元。 1.写出Z与X之间的关系式. 2.写出W与X之间的关系式. 3.A队胜多少场时,这名队员所得总收入最大。是多少元?
用每分钟时间可抽1.1吨水的A型抽水机用来抽水,半小时可以抽完;如果用B型抽水机,估计20分钟到22分钟可以抽完. B型抽水机比A型抽水机每分约多抽多少?
某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%—20%,进价的范围是什么(精确到1元)?
苹果的进价是每千克1.5元。销售中估计有百分之5的苹果正常损耗。商家把售价至少定为多少,就能避免亏本?
矿山爆破时,为了确保安全,点燃引火线后,要在爆破前移到300m以外的安全区域。引火线燃烧速度为0.8m/s,人离开速度为6m/s。问引火线至少要多少m
工厂前年有员工280人,去年经过结构改革减员40人,全场年利润增加100万元,人均创利至少增加6000元,前年全厂年利润至少是多少?
点燃导火线后工人要在爆破钱转移到400m外的安全区域。导火线燃烧速度是1cm/s,工人转移的速度是5m/s,导火线要大于多少米?
某饮料厂为开发新产品,用A,B两种果汁原料各19千克, 千克,试制甲,乙两种新型饮料共50千克,下面是试验的相关数据:
甲种新型饮料每千克含量A为0.5,B为0.2
乙种新型饮料每千克含量A为0.3,B为0.4
1.假设甲种饮料需配制x千克,列出满足题意的不等式组,并求出解集.
2.甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,根据1.的运算结果,确定当配制多少千克甲种饮料时,甲乙两种饮料的成本总额最小?
学生合影留念,照一份印两张收费5.7元,加印一张0.96元,预定每人平均出钱不超过2元,且每人都拿到1张照片,问参加照相的至少有几位同学?
光明中学9年级甲、乙两班在为“希望工程”捐款活动中,两班捐款的总数相同,均多于300元且少于400元。已知甲班有一人捐6元,其余都每人捐9元;一班有一人捐13元,其余每人都捐8元。求甲、乙两班学生总人数共是少人。
在容器里有18摄示度的水6立方米,现在要把8立方米的水注入里面,使容器里混合的水的温度不低于30摄示度,且不高于36摄示度,求注入的8立方米的水的温度应该在什么范围?
1.幼儿园几个小孩分一箱苹果,如果每人分3个,那么余7个;如果每人分5个,那么有1人分得得苹果不足5个,问有多少小孩?多少苹果
某公司经过市场调查,甲产品每件产品的产值为45万元,乙产品每件产品的产值为75万元,要求这两种产品全年共新增产量20件,这20件的总产值P(万元)满足:1100<P<1200,那么该公司明天应怎么安排甲,乙两种产品的生产量
某公司经过市场调查,甲产品每件产品的产值为45万元,乙产品每件产品的产值为75万元,要求这两种产品全年共新增产量20件,这20件的总产值P(万元)满足:1100<P<1200,那么该公司明天应怎么安排甲,乙两种产品的生产量
小放家每月水费不少于15元,自来水公司规定:若每户每月用水不超过5立方米,则每立方米收1、8元,若每户每月用水超过5立方米,则超出部分每立方米2元,小放家用水至少是多少
1。用每分时间可抽1.1吨水的A型抽水机来抽池水,半小时可以抽完,如果用B型抽水机,估计20分到22分可以抽完。 B型 抽水机比A型抽水机非分约多抽多少吨水?
2。一种药品的说明书上写着:“每日用量60——120mg,分3——4次服用。”一次服用这种药的剂量在什么范围?
一种药品的说明书上写着:"每日用量60~120mg,分3~4次服用,"则一次服用药的剂量在什么范围?
数学书P58-59,17,18,19,20题,P89,16,18题,
1.把( )改写成以“万”作单位的数是9567.8万,省略“亿”后面的尾数约是( )。
2.把5米长的钢筋,锯成每段一样长的小段,共锯6次,每段占全长的( )( ) ,每段长( )米。如果锯成两段需2分钟,锯成6段共需( )分钟。
3.观察与思考:
(1)算式中的 □和△各代表一个数。已知:(△+□)×0.3=4.2, □÷0.4=12。
那么,△ =( ), □ =( )。
(2)观察右图,在下面的括号内填上一个字母,使等式成立。
前面面积( ) = 上面面积( )
4.右图是甲、乙、丙三个人单独完成某项工程所需天数
统计图。请看图填空。
① 甲、乙合作这项工程,( )天可以完成。
② 先由甲做3天,剩下的工程由丙做,还需要( )天完成。
5.a=2×3×m,b=3×5×m(m是自然数且m≠0),如果a和b的最大公约数是21,
则m是( ),a和b的最小公倍数是 ( ) 。
6.把一条绳子分别等分折成5股和6股,如果折成5股比折成6股长20厘米,那么这根绳子的长度是( )米。
7.甲乙丙三个数的平均数是70,甲:乙=2:3,乙:丙=4:5,乙数( )。
8.一个数的小数点,先向右移动一位,再向左移动三位,所得到的新数比原数少34.65,原数是( )。
9.以“万”为单位,准确数5万与近似数5万比较最多相差( )。
10.小明新买一瓶净量45立方厘米的牙膏,牙膏的圆形出口的直径是6毫米。他早晚各刷一次牙,每次挤出的牙膏长约20毫米。这瓶牙膏估计能用( )天。 (取3作为圆周率的近似值)
11.在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是( )平方厘米。
12.一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为40千米,则返回时每小时应航行( )千米。
二. 反复比较,择优录取:(10%)
1.已知:a×23 =b×135 =c÷23 ,且a、b、c都不等于0,则a、b、c中最小的数是( )。
① a ② b ③ c
2.在有余数的整数除法算式中,除数是b商是c,(b、c均不为0),被除数最大为( )。
① bc+b ② bc-1 ③ bc+b-1
3.在含盐30%的盐水中,加入6克盐14克水,这时盐水含盐百分比是( )。
① 等于30% ② 小于30% ③ 大于30%
4.小华双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用20分钟;扫地要用6分钟;擦家具要用10分钟;晾衣服要用5分钟。她经过合理安排,做完这些事至少要花( )分钟。
① 21 ② 25 ③ 26
5.下列各式中(a、b均不为0),a和b成反比例的是( )。
① a×8=b5 ② 9a=6b ③ a×13 -1÷b= 0 ④ a+710 =b
6.把5件相同的礼物全部分给3个小朋友,使每个小朋友都分到礼物,分礼物的不同方法一共有( )种。
① 3 ② 4 ③ 5 ④ 6
7.一双鞋子如卖140元,可赚40%,如卖120元可赚( )。
① 20% ② 22% ③ 25% ④ 30%
8.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是( )千米。
① 672 ② 1008 ③ 336 ④ 1680
9.如果一个圆锥的高不变,底面半径增加 13 ,则体积增加( )。
① 13 ② 19 ③ 79 ④ 169
10.一辆汽车以每小时50千米的速度,从相距80千米的甲地开往乙地。所带的汽油最多可以行2小时,在途中不加油的情况下,为保证返回出发地,最多开出( )千米,就应往回行驶了。
① 20 ② 40 ③ 50 ④ 100
三.看清题目,巧思妙算:
⑴ 直接写数对又快!(8%)
1322-199= 1.87+5.3= 2.5×2.4= 1÷13 -13 ÷1 =
4.9×8.1≈ 23.9÷8≈ 0.32 - 0.23 = ( ):17 = 17
⑵ 神机妙算细又巧!(写出简算过程)(12%)
2004×20022003 (115 +217 )×15×17 11×2 + 12×3 + 13×4 + …… + 198×99 + 199×100
松一松手腕,理一理头绪,再翻开下一页吧!
⑶ 解方程,我没问题!(9%)
4÷23 X = 25 8(x-2)= 2(x+7) 320 :18% = 6.5x
第二部分:“动画”世界,探索创新
下面这些图形你一定很熟悉吧,那就请你动起手来,成功属于你!
⑴有12个1立方分米的立方体商品,请你为它设计一个长方体包装箱,共有( )种
不同的包装法;当包装箱的长是( ) 分米、宽是( )分米、高是( )分米时,
最节省包装纸。至少需要包装纸( )平方分米(接头处忽略不计)。(5%)
⑵街心花园的直径是5米,现在它的周围修一条1米宽的环形路,请按1250 的
比例尺画好设计图,并求出路面的实际面积。(3%+2%)
计 作 o.
算 图
⑶小方桌面的边长是1米,把它的四边撑开,就成了一张圆桌面(如下图)。
求圆桌面的面积。(3%)
第三部分:走进生活,解决问题
生活中有许多问题和数学有关,你能解决这些问题吗?相信你一定能行!
1.只列式不计算:(8%)
①小明用8天时间看完一本书,每天看了这本书的 19 还多2页,这本书共有多少页?
列式:
③甲乙两辆汽车同时从两地相向而行,甲车每小时行45千米,乙车每小时行42千米。两车在距离中点12千米处相遇。两车同时开出后经过多少小时相遇?
② 一种报纸,如果一个月一订,没有优惠,需10元。如果一年一订,可优惠10%,这样订阅一年需要多少钱?
列式:
④ 某商场参加财物保险,保险金额为4000万元,保险费率为0.75%,由于事故,损失物品价值达650万元,保险公司赔偿500万元,这样商场实际损失了多少万元?
列式: 列式:
2.看图列式计算:(5%)
3.为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,大洋商城打九折,百汇商厦“买八送一”。学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。(5%)
4.一只两层书架,上层放的书比下层的3倍还多18本,如果把上层的书拿出101本放到下层,那么两层所放的书本数相等。原来上下层各有书几本?〔用方程解〕(5%)
5.某校学生举行游,若租用45座客车,则有15人没有座位,若租用同样数目的60座客车,则一辆客车空车。已知45座客车租金220元,60座客车租金300元。
问:⑴这个学校一共有学生多少人? (3%) ⑵ 怎样租车,最经济合算?(2%

⑶ 为什么中国古代把数学称为算术

算术是数学中最古老、最基础和最初等的部分。它研究数的性质及其运算。
“算术”这个词,在我国古代是全部数学的统称。至于几何、代数等许多数学分支学科的名称,都是后来很晚的时候才有的。 国外系统地整理前人数学知识的书,要算是希腊的欧几里得的《几何原本》最早。《几何原本》全书共十五卷,后两卷时候人增补的。全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。 现在拉丁文的“算术”这个词是由希腊文的“数和数(音属,shû三音)数的技术”变化而来的。“算”字在中国的古意也是“数”的意思,表示计算用的竹筹。中国古代的复杂数字计算都要用算筹。所以“算术”包含当时的全部数学知识与计算技能,流传下来的最古老的《九章算术》以及失传的许商《算术》和杜忠《算术》,就是讨论各种实际的数学问题的求解方法。
算数的产生
关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。 自然数的一个特点就是由不可分割的个体组成。比如说树和羊这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。 不过,自然数不足以解决生活和生产中常见的分份问题,因此数的概念产生了第一次扩张。分数是对另一种类型的量的分割而产生的。比如,长度就是一种可以无限地分割的量,要表示这些量,就只有用分数。 从已有的文献可知,人类认识自然数和分数的历史是很久的。比如约公元前2000年流传下来的古埃及莱茵德纸草书,就记载有关于分数的计算方法;中国殷代遗留下来的甲骨文中也有很多自然数,最大的数字是三万,并且全部是应用十进位制的位置计数法。 自然数和分数具有不同的性质,数和数之间也有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。 把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。 算术的发展 在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。 一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除尽,有的除不尽,有的数可以分解,有的数不能分解,有些数又大于1的公约数,有些数没有大于1的公约数。为了寻求这些数的规律,从而发展成为专门研究数的性质、脱离了古算术而独立的一个数学分支,叫做整数论,或叫做初等数论,并在以后又有新的发展。 另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。在长期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。也就是说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数。 数学发展到现在,算术已不再是数学的一个分支,现在我们通常提到的算术,只是作为小学里的一个教学科目,目的是使学生理解和掌握有关数量关系和空间形式的最基础的知识,能够正确、迅速地进行整数、小数、分数的四则运算,初步了解现代数学中的一些最简单的思想,具有初步的逻辑思维能力和空间观念。 现代小学数学的具体内容,基本上还是古代算术的知识,也就是说,古代算术和现代算术的许多内容上是相同的。不过现代算术和古代算术也还存在着区别。 首先,算术的内容是古代的成人包括数学家所研究的对象,现在这些内容已变成了少年儿童的数学。其次,在现代小学数学里,总结了长期以来所归结出来的基本运算性质,即加法、乘法的交换律和结合律,以及乘法对加法的分配律。这五条基本运算定律,不仅是小学数学里所学习的数运算的重要性质,也是整个数学里,特别是代数学里着重研究的主要性质。 第三,在现代的小学数学里,还孕育着近代数学里的集合和函数等数学基础概念的思想。比如,和、差、积、商的变化,数和数之间的对应关系,以及比和比例等。 另外,现在小学数学里,还包含有十六世纪才出现的十进小数和它们的四则运算。应当提出的是十进小数不是一种新的数,而可以被看作是一种分母是10的方幂的分数的另一种写法。 我们在这里把算术列成第一个分支,主要是想强调在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了一个分支了。因此,也可以说算术是最古老的分支。 为什么以前中国把“数学”称为“算学”和“算术” 现在,算术是数学的一个分支,其内容包括自然数和在各种运算下产生的性质,运算法则以及在实际中的应用。可是,在数学发展的历史中,算术的含义比现在广泛得多。 在我国古代,算是一种竹制的计算器具,算术是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。算术一词正式出现于《九章算术》中。《九章算术》分为九章,即方田、粟米等。这些大都是实用的名称。如“方田”是指土地的形状,讲土地面积的计算,属于几何的范围;“粟米”是粮食的代称,讲的是各种粮食间的兑换,主要涉及的是比例,属于今天算术的范围。可见,当时的“算术”是泛指数学的全体,与现在的意义不同。 直到宋元时代,才出现了“数学”这一名词,在当时数学家的菱中,往往数学与算学并用。当然,这里的数学仅泛指中国古代的数学,它与古希腊数学体系不同,它侧重研究算法。 从19世纪起,西方的一些数学学科,包括代数、三角等相继传入我国。西方传教士多使用数学,日本后来也使用数学一词,中国古算术则仍沿用“算学”。1953年,中国数学会成立数学名词审查委员会,确立起“算术”现在的意义,而算学与数学仍并存使用。1937年,清华大学仍设“算学系”。1939年为了统一起见,才确定专用“数学”,直到今天。

⑷ 什么是以算盘为工具进行数学计算的一种方法

"珠算"是以算盘为工具进行数学计算的一种方法。
"珠算"是以算盘为工具进行数学计算的一种方法。
"珠算"是以算盘为工具进行数学计算的一种方法。
如果是你想要的答案,还望采纳谢谢!

⑸ 数学是一个什么样的东西

数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
1:数学史
2:数理逻辑与数学基础
X轴Y轴
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科
发展历史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
图中数字为国家二级学科编号.

结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.

空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.

基础

旋转曲面(8张)

主条目:数学基础
为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”

逻辑
主条目:数理逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.

符号
编辑
主条目:数学符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含着大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.

严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.

数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.
另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.

简史

西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.

中国数学简史
主条目:中国数学史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.

相关
编辑
中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的:
【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式).
【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”.
【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”.
【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”.
【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”.
【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”.

【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”.
【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”.
【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”.
【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”.
【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”.
【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”.
【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”.
【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”.
【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”.
【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”.
【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”.
【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”.
【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”.
【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”.

数学名言
外国人物
万物皆数.——毕达哥拉斯
几何无王者之道.——欧几里德
数学是上帝用来书写宇宙的文字.——伽利略[2]
我决心放弃那个仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何.——笛卡儿(Rene Descartes 1596-1650)
数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.——高斯
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误.——柯西(Augustin Louis Cauchy 1789-1857)
数学的本质在于它的自由.——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845-1918)
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.——克莱因(Christian Felix Klein 1849-1925)
只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特(David Hilbert 1862-1943)
问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916-2006)
时间是个常数,但对勤奋者来说,是个‘变数’.用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍.——雷巴柯夫

⑹ 小学一年级数学什么叫平十法和破十法

破十法是一种数学计算方法,即当个位不够减时,就用10减去减数,剩下的数和十位上的数相加,即破十法。

比如:11-4=?,“1-4”个位数不够减,所以就从11(10+1)里,用10减去4,就等于6了,再用剩下的数字6和十位数上的1相加,等于7。

而平十法就是把减数分成两个数,被减数减去第一个数后要等于10,然后再用10来减去第二个数得出最终结果,即平十法。

比如:18-9=?可以这样做:先用18减8,剩10,再减1。

⑺ 求教一个数学问题:什么是数字运算定义是什么

就是计算数学表达式的过程。数学表达式由数字和运算符号(还包括小括号、中括号、大括号)组成的。

⑻ 小学数学快速计算方法是什么

一、加法交换律与加法结合律


加法交换律:


两个数相加,交换加数的位置,它们的和不变。即a+b=b+a


一般地,多个数相加,任意改变相加的次序,其和不变。


a+b+c+d=d+b+a+c


加法结合律:


几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c),


二、速算与巧算中常用的三大基本思想


1、凑整(目标:整十整百整千...)


2、分拆(分拆后能够凑成整十整百整千...)


3、组合(合理分组再组合)


三、常见方法


凑整法


两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"


如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。


又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,


在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。


对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。


如:87655→12345,46802→53198,87362→12638。


利用"补数"巧算加法,通常称为"凑整法"。


巧算下面各题:


①36+87+64


②99+136+101


③1361+972+639+28


解:


①式=(36+64)+87=100+87=187


②式=(99+101)+136=200+136=336


③式=(1361+639)+(972+28)=2000+1000=3000



魏德武速算


魏氏速算它可以不借助任何计算工具在很短时间内就能使学习者,用一种思维,一种方法快速准确地掌握任意数加、减、乘、除的速算方法。从而达到快速提高学习者口算和心算的速算能力。


1、加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:


(1),67+48=(6+5)×10+(7-2)=115;


(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。


2、减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:


(1),67-48=(6-5)×10+(7+2)=19;


(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。


以上内容参考网络-数学速算法

⑼ 什么叫做算数法

按照规定的法则和顺序对式题或算式进行运算,并求出结果的过程。包括:加法、减法、乘法、除法、乘方、开方等几种运算形式。

其中加减为一级运算,乘除为二级运算,乘方、开方为三级运算。在一道算式中,如果有几级运算存在,则应先进行高级运算,再进行低一级的运算。

同分母分数相加、减,分母不变,只把分子相加、减;异分母分数相加、减,先通分,再按同分母分数加、减法的法则进行计算;结果不是最简分数的要约分成最简分数。



(9)一种数学算数是什么扩展阅读:

除数是整数时,按整数除法进行计算,商的小数点要与被除数的小数点对齐;除数是小数时,先转化成除数是整数的小数除法,再按照除数是整数的小数除法进行计算。

从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。

⑽ 为什么中国古代把“数学”称为“算术”

数学在中国古代是被称为“算术”的,它所使用的最早运算工具叫“筹策”,通常简称“筹”或“策”,其实是一些小木棍或草棍,也可以是竹节,把它们摆放在地上或案上,就可以按照一定的规则进行运算了。
不过需要指出的是,筹策在古代不仅可以指算术上的运算工具,也可以指占筮用的蓍草。也就是说,古代算术与占筮最初所使用的工具,大概是属于同一个类型的。而占筮用的蓍草,在古人看来,那是具有神性的,因此,我们也可以作这样的推断,算术起初可能也是带有神秘主义色彩的。其实,又何止是运算工具,就是古人用于盛装算筹的算袋也被看作是有神性的。
据说秦始皇曾经有一只算袋丢入东海之中,结果这只算袋中竟然生出了一种鱼!
从日常语言的使用来看,古人把数字运算的规则、方法等看作一种“术”,所以也就称之为“算术”。又把占筮、算命等数术活动的过程看作是一种运算,故而也称之为“占算”。在这里,我们也可以看出,算术与占筮的原初关联。或许,算术就是从占筮活动中演化而来,这也极有可能。
《汉书·律历志》中给出了一副算筹的样式:
其算法用竹,径一分,长六寸,二百七十一枚而成六觚,为一握。
意思是说,算筹是用竹子制成的,直径为一分,长为六寸,二百七十一枚算筹组成一个六棱柱形,称为一握。
表面上看来,这副算筹的构成似乎没有什么奇异之处,然而在汉代的文化氛围中,它们的每一项规定却都是有数术观念的。请看《汉书》中的注释:
径象乾律黄钟之一,而长象坤吕林钟之长,其数以《易》大衍之数五十,其用四十九,成阳六爻,用周流六虚之象也。
也就是说,一根算筹的直径取一分,象征十二律中的六律之首黄钟的九分之一;长六寸,象征六吕之首林钟的管长;而一握之数二百七十一,则来源于《周易》筮法中大衍之数的用数四十九、乾之策数二百一十六及爻数六之和,即:49+216+6=271。
汉代徐岳的《数术记遗》以及《隋书·律历志》中也有类似的记载,无非是算筹的尺寸大小与数术系统中的神秘数字相比附,借以把算筹或是算术神秘化,与《汉书·律历志》的做法如出一辙。
中国古代另一种独特的算具是算盘,它的最早记载也见于徐岳的《数术记遗》。徐岳在书中“珠算”条下写道:“控带四时,经纬三才。”也就是说,珠算法保持并贯穿四时,还固定着天、地、人三才,就像织物的经纬一样。后来,《数术记遗》的注释者甄鸾在这段话的下面给出了算盘的作法,即把一块板用三个横向的隔板分开,上面和下面的隔板用来悬挂可移动的算珠,中间的隔板用于定位;每位有五颗珠,定位板上面一珠的颜色与下面四珠的颜色不同;上面那颗珠相当于五个单位,下面四颗珠中中每一颗珠相当于一个单位。因为四颗珠上下移动,所以说它保持并贯穿四时;又由于有三个隔板使各珠在其间移动,所以说它固定三才,就像织物的经纬一样。从甄鸾的注释来看,这种算盘的结构尽管与后世的算盘大同小异,但由于与四时、三才等观念相比附,具有了明显的神秘化倾向。
其实,与算筹、算盘类似,中国古代的量尺、量器等用具的结构也都具有各种神秘主义的解说。如此看来,数学在古代被称之为“算术”也就不足为怪了!

阅读全文

与一种数学算数是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068