‘壹’ 什么叫“黄金比”
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
不仅这个由1,1,2,3,5....开始的"菲波那契数"是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比 2/3,3/5,5/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的帕撒神农庙就是一个很好的例子,他的 <维特鲁威人>符合黄金矩形.<蒙娜丽莎>的脸也符合黄金矩形,<最后的晚餐>同样也应用了该比例布局.
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为(√5-1)/2
黄金分割数是无理数,前面的50位为:
0.6180339887 4989484820 4586834365 6381177203 0917980576
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是 0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。
数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000— 2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的 0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法” 做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数
黄金分割与人的关系
黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。
医学与0.618有着千丝万缕的联系,它可解释人为什么在环境22至24摄摄氏度时感觉最舒适。因为人的体温为37°C与0.618的乘积为22.8° C,而且这一温度中肌体的新陈代谢、生理节奏和生理功能均处于最佳状态。科学家们还发现,当外界环境温度为人体温度的0.618倍时,人会感到最舒服.现代医学研究还表明,0.618与养生之道息息相关,动与静是一个0.618的比例关系,大致四分动六分静,才是最佳的养生之道。医学分析还发现,饭吃六七成饱的几乎不生胃病。
高雅的艺术殿堂里,自然也留下了黄金数的足迹.画家们发现,按0.618:1来设计腿长与身高的比例,画出的人体身材最优美,而现今的女性,腰身以下的长度平均只占身高的0.58,因此古希腊维纳斯女神塑像及太阳神阿波罗的形象都通过故意延长双腿,使之与身高的比值为0.618,从而创造艺术美.难怪许多姑娘都愿意穿上高跟鞋,而芭蕾舞演员则在翩翩起舞时,不时地踮起脚尖.音乐家发现,二胡演奏中,“千金”分弦的比符合0.618∶1时,奏出来的音调最和谐、最悦耳.
植物叶子,千姿百态,生机盎然,给大自然带来了美丽的绿色世界.尽管叶子形态随种而异,但它在茎上的排列顺序(称为叶序),却是极有规律的.有些植物的花瓣及主干上枝条的生长,也是符合这个规律的.你从植物茎的顶端向下看,经细心观察,发现上下层中相邻的两片叶子之间约成137.5°角.如果每层叶子只画一片来代表,第一层和第二层的相邻两叶之间的角度差约是137.5°,以后二到三层,三到四层,四到五层……两叶之间都成这个角度.植物学家经过计算表明:这个角度对叶子的采光、通风都是最佳的.叶子的排布,多么精巧!叶子间的137.5°角中,藏有什么“密码”呢?我们知道,一周是360°,360°-137.5°= 222.5°,而137.5°∶222.5°≈0.618. 瞧,这就是“密码”!叶子的精巧而神奇的排布中,竟然隐藏着0.618.
‘贰’ 什么是黄金比
黄金比又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
‘叁’ 数学当中的黄金比例事怎么回事
老迷路了,你好:
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
‘肆’ 初中数学黄金比例公式是什么
初中数学黄金比例公式:(√5-1)/2。
黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
黄金分割点美学价值:
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛。
建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
‘伍’ 黄金比是什么
黄金比率是指一连串神奇数字的组合,是技术分析中纯以数字运算的一种分析工具。
黄金比率是源于神奇数字(Fibonnacci Number Sequence)。黄金比率是由十三世纪末出生的意大利着名数学家Leonardo Fibonacci发现的,比率由一组神奇数字计算而成。
这串神奇数列,是任何相列的两个数字之和都等于后一个数字。即:1,1,2,3,5,8,13,21,34,55,89,144……如此类推。即1+1=2,1+2=3,2+3=5,3+5=8等。
常用到的黄金数字,是0,0.236,0.382,0.5,0.618,0.764及1,此外,亦会用到1.382,1.618等数值,其实就是1以至2等整数加上黄金数字。
(5)数学中的黄金比是什么扩展阅读:
黄金比率在股市的应用
透过这些比率,可以用来测试未来市况的上升目标或下跌目标,预测升市中的调整幅度,以及跌市中的反弹幅度等。
黄金比率包括最常见的0.236倍比率、0.382倍比率、0.5倍比率、O.618倍比率、0.764倍比率、1.382倍比率、1.618倍比率、2倍及2.618倍比率等。由于黄金比率测市功效显着,准确性奇高,所以,得到市场人士广泛使用。
—般来说,在调整市中,黄金比率0.382倍、O.5倍及0.618倍被视为调整时之三级支持,支持力随向下调整的深度而逐级递增,即币况由高位回吐至0.382倍水平已有初步支持。
若该位失守,市况将进一步下试0.5倍水平,此时支持力将明显较0.382倍之支持力为大。失去守0.5倍则要到0.618倍水平才有支持,而该位的支持力将较前两级之支持更大。市况若企稳该水平以上,后市基调仍然向好。
此外,另两个比率O.236倍及0.764倍则较为少用,其中前者主要在大型上升;目的中段出现,期间市况只作短暂回吐即获支持再上。而0.764倍比率则相对重要得多,主要是该比率对中期走势有重要指标作用。
技术上,市况在中期升浪中只要调整不低于0.764倍,反复向上格局不变,否则升势将被打回原形,跌回升浪之起步点。而吕有出现转势的危机,目口原有升势可能结束,或转为一上落市。
至于反弹市方面,与调整市刚好相反,0.382倍、o.5倍及0.618倍比率被视为反弹时之三级阻力,阻力随向上反弹幅度而逐级递增,即股价由低位反弹上O.382倍附近已有初步阻力。
通常在突破0.382倍阻力后可望上试0.5倍水平,但该水平的阻力亦逐渐加大。若再向上突破,股价将进一步上试0.618倍强大阻力。后市若无法向上突破,走势仍是反复向下。
量度上升或下跌水平是黄金比率中一个最重要部分,原因是这些比率可以粗略评佰或测试市况向上或向下突破后的上升或下跌目标,上升阻力及下跌支持等。最常见的比率包括1.382倍、1..618倍,2倍及2.618倍。
即是说,当市况向上或向下突破后,市况将会朝着第一个上升或下跌目标1.382倍水平推进,若能进一步突破该水平,市况将再试1.618倍第二个目标……如此类推。而上升或下跌的阻力或支持将逐级增加。
黄金比率测市连确性相当高,无论在测试上升水平或下跌水平,调整市或反弹市幅度,偏差幅度相当有限。因此,对预测后市走势有非常高的参考价值。
‘陆’ 数学中什么是黄金比例
黄金比例最初是一个数学上的特殊比值0.618比如一条直线上一点把直线分为AB两部分,A的长度与B的长度的比值为0.618那么就说A与B的比例为黄金比例,直线上的那一点为黄金分割点,黄金比例能给人很大的美感,在艺术上用处比较大
‘柒’ 小学数学中什么叫黄金比例
黄金比例和黄金分割是
同义词
黄金
分割又称黄金律,是指
事物
各部分间一定的
数学
比例关系,即将
整体
一分为二,较大
部分
与较小部分之比等于整体与较大部分之比,其
比值
为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的
比例
数字
。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
‘捌’ 黄金比例的公式是什么
黄金比例是一个定义为 (√5-1)/2的无理数。
黄金比又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。应用在生活中有神奇魅力。
主要特点
黄金比例是一种数学上的比例关系。黄金比例具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边 1.618倍。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。
在很多艺术品以及大自然中都能找到它。希腊雅典的帕撒神农庙就是一个很好的例子。而达·芬奇的《维特鲁威人》符合黄金矩形。《蒙娜丽莎》中蒙娜丽莎的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局。
三角形的黄金比
正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由于五角形的顶角是36度,这样也可以得出黄金分割的数值为2sin18°(即2*sin(π/10))。
将一个正五边形的所有对角线连接起来,所产生的五角星里面的所有三角形都是黄金分割三角形。
‘玖’ 数学 什么是黄金比例
把1段线段分成两段,所形成的比例的最佳点。
用c把线段ab分成ac、bc,要选c是最佳就是确定得到线段比例ac/ab=bc/ac,设ac=x,那么bc=1-x(把线段ab看成一个单位)代人
ac/ab=bc/ac。x/1=(1-x)/x
。解x约等于0.618.就是说把c点选在0.618那里,是最佳点。后来就把0.618称为黄金分割点。
现代黄金分割广泛用于工业、农业、等几乎所有行业,连买卖股票都可以使用,在家庭也可以使用,好像蒸馒头,不知道1千克面粉要下多少发酵粉,只知道是10克在内,那么可以试一下,在黄金分割点就是6.18克,蒸的馒头,觉得发酵粉多了或者少了,第二次在6.18克到10克之间的0.618处,8.541克试一下,这样就可以减少实验次数。在实验室也是可以减少实验次数。