导航:首页 > 数字科学 > 数学中族是什么意思

数学中族是什么意思

发布时间:2022-08-27 04:26:20

❶ 集合族是什么意思

在集合论和有关的数学分支中,给定集合 S 的子集的搜集 F 叫做 S 的子集族或 S 上的集合族。更一般的说,无论什么任何集合的搜集都叫做集合族。
例子[编辑]幂集 P(S) 是在 S 上的集合族。n 元素集合 S 的 k 元素子集 S(k) 形成了集合族。抽象单纯复形是集合族。所有序数的类 Ord 是“大”集合族;它自身不是集合而是真类。样本空间的某些子集组成的集合叫做集合族。性质[编辑]S 的任何子集族自身都是幂集 P(S) 的子集。不论什么集合族都是所有集合的真类(全集) V 的子类。超图是集合 V (顶点集合)加上 V 的非空子集族(边)。

❷ 数学中的集合是什么意思

定义
非正式的,一个集合就是将几个对象适当归类而作为一个整体。一般来说,集合为具有某种属性的事物的全体,或是一些确定对象的汇合。构成集合的事物或对象称作元素或成员。集合的元素可以是任何东西:数字,人,字母,别的集合,等等。[编辑]
符号
集合通常表示为大写字母
A,
B,
C……。而元素通常表示为小写字母a,b,c……。元素a属于集合A,记作aA。假如元素a不属于A,则记作aA。如果两个集合
A

B
它们各自所包含的元素完全一样,则二者相等,写作
A
=
B。[编辑]
集合的特点
无序性
在同一个集合里面的每一个元素的地位都是相同的,所以元素的排列是没有顺序的。
互异性
在同一个集合里面每一个元素只能出现一次,不能重复出现。
确定性
定制集合的标准是确定的而不是含糊的,如全国全体较高的男生,这里的较高没有标准是含糊的。
[编辑]
集合的表示
集合可以用文字或数学符号描述,称为描述法,比如:
A
=
大于零的前三个自然数
B
=
红色、白色、蓝色和绿色
集合的另一种表示方法是在大括号中列出其元素,称为列举法,比如:
C
=
{1,
2,
3}
D
=
{红色,白色,蓝色,绿色}
尽管两个集合有不同的表示,它们仍可能是相同的。比如:上述集合中,A
=
C

B
=
D,因为它们正好有相同的元素。元素列出的顺序不同,或者元素列表中有重复,都没有关系。比如:这三个集合
{2,
4},{4,
2}

{2,
2,
4,
2}
是相同的,同样因为它们有相同的元素。集合在不严格的意义下也可以通过草图来表示,更多信息,请见文氏图。
[编辑]
集合的元素个数
上述每一个集合都有确定的元素个数;比如:集合
A
有三个元素,而集合
B
有四个。一个集合中元素的数目称为该集合的基数。集合可以没有元素。这样的集合叫做空集,用符号
表示。比如:在2004年,集合
A
是所有住在月球上的人,它没有元素,则
A
=
。就像数字零,看上去微不足道,而在数学上,空集非常重要。更多信息请看空集。如果集合含有有限个元素,那么这个集合可以称为有限集。集合也可以有无穷多个元素。比如:自然数的集合是无穷大的。关于无穷大和集合的大小的更多信息请见集合的势。[编辑]
子集
主条目:子集如果集合
A
的所有元素同时都是集合
B
的元素,则
A
称作是
B
的子集,写作
A

B。

A

B
的子集,且
A
不等于
B,则
A
称作是
B
的真子集,写作
A

B。B
的子集
A
举例:所有男人的集合是所有人的集合的真子集。
所有自然数的集合是所有整数的集合的真子集。
{1,
3}

{1,
2,
3,
4}
{1,
2,
3,
4}

{1,
2,
3,
4}
空集是所有集合的子集,而所有集合都是其本身的子集:⊆
A
A

A
[编辑]
并集
主条目:并集有多种方法通过现有集合来构造新的集合。两个集合可以相"加"。A

B
的并集(联集),写作
A

B,是或属于
A
的、或属于
B
的所有元素组成的集合。A

B
的并集
举例:{1,
2}

{红色,
白色}
=
{1,
2,
红色,
白色}
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{1,
2,
红色,
白色,
绿色}
{1,
2}

{1,
2}
=
{1,
2}
并集的一些基本性质A

B
=
B

A
A

A

B
A

A
=
A
A

=
A
[编辑]
交集
主条目:交集一个新的集合也可以通过两个集合"共"有的元素来构造。A

B
的交集,写作
A

B,是既属于
A
的、又属于
B
的所有元素组成的集合。若
A

B
=
,则
A

B
称作不相交。A

B
的交集
举例:{1,
2}

{红色,
白色}
=
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{绿色}
{1,
2}

{1,
2}
=
{1,
2}
交集的一些基本性质A

B
=
B

A
A

B

A
A

A
=
A
A

=
[编辑]
补集
主条目:补集两个集合也可以相"减"。A

B
中的相对补集,写作
B

A,是属于
B
的、但不属于
A
的所有元素组成的集合。在特定情况下,所讨论的所有集合是一个给定的全集
U
的子集。这样,
U

A
称作
A
的绝对补集,或简称补集(馀集),写作
A′或CUA。相对补集
A
-
B
补集可以看作两个集合相减,有时也称作差集。举例:{1,
2}

{红色,
白色}
=
{1,
2}
{1,
2,
绿色}

{红色,
白色,
绿色}
=
{1,
2}
{1,
2}

{1,
2}
=

U
是整数集,则奇数的补集是偶数
补集的基本性质:A

A′
=
U
A

A′
=
(A′)′
=
A
A

B
=
A

B′
[编辑]
对称差
见对称差。[编辑]
集合的其它名称
在数学交流当中为了方便,集合会有一些别名。比如:族、系通常指它的元素也是一些集合。
[编辑]
公理集合论
把集合看作“一堆东西”会得出所谓罗素悖论。为解决罗素悖论,数学家提出公理化集合论。在公理集合论中,集合是一个不加定义的概念。[编辑]

在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算是并不都能进行的。定义
类A如果满足条件“”,则称类A为一个集合(简称为集),记为Set(A)。否则称为本性类。这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。

❸ 子集族的定义是什么

子集族又称一般拓扑学
用点集的方法研究拓扑不变量的拓扑分支。它的前身是点集拓扑学。点集拓扑学产生于19世纪。G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。泛函分析的兴起,希尔伯特空间和巴拿赫空间的建立,更促进了把点集当作空间来研究。数学分析研究的中心问题是极限,而收敛与连续又是极限的基本问题。为把收敛与连续的研究推广到一般集合上,需要在一般集合上描述与点或与集合“邻近”的概念。如何描述“邻近”,可以用“距离”,但“距离”与“邻近”并无必然的联系。1914年F.豪斯道夫开始考虑用“邻域”来定义拓扑。对一个非空的集合X,规定X的每点有一个包含此点的子集作成的子集族,满足一组邻域公理(即仿照欧几里得空间邻域所具特性给出的一组性质)。该子集族中的每个集合称为这点的一个邻域 。这就给出了X的一个拓扑结构。X连同此拓扑结构称为一个拓扑空间。X的每点有邻域,故可研究一点的邻近,由此可仿照微积分的方法定义两个拓扑空间之间的连续映射的概念。若一个映射连续,且存在逆映射,逆映射也连续,则称此映射为同胚映射。具有同胚映射的两个拓扑空间称为同胚的(直观地说即两个空间相应的图形从一个可连续地形变为另一个)。要证明两个空间同胚,只要找到它们之间的同胚映射即可。在欧几里得直线上,作为子空间,两个任意的闭区间同胚;任意两开区间同胚;半开半闭的区间[c,d〕与[a,b〕同胚。二维球面挖去一个点s2-p与欧几里得平面K2同胚。要证明两个拓扑空间不同胚,需证明它们之间不存在同胚映射。方法是找同胚不变量或拓扑不变性(即在同胚映射下保持不变的性质);第一个空间具有某同胚不变量,另一个空间不具有,则此二空间不同胚。一般拓扑学中常见的拓扑不变性有连通性、道路连通性、紧性、列紧性、分离性等(见拓扑空间)。在历史上F.豪斯多夫提出了分离空间;弗雷歇看出了紧性与列紧性有密切关系;L.S.乌雷松对紧空间进行了系统研究 ,且在拓扑空间可否变量化的问题上作出了贡献 ;1937年H.嘉当引进了“滤子”的概念,能进一步刻画一致收敛,使收敛的更本质的属性揭示了出来;维数的问题是E.嘉当在研究皮亚诺曲线(一种可填满整个正方形的“曲线”)时提出的,1912年H.庞加莱给出定义,乌雷松等人加以改进。

❹ 簇 的概念属于数学哪部分知识

簇 不是数学中的概念
它是指一类集合.同一类性质的集合.
物理,化学各方面都有这个词.

❺ 高中数学集合R族

设A={1,2,3,4,5,6}, A1={2,4,6}, A2={3.6}, A3={2,3}
显然,A1与A2相交,A2与A3相交,A1与A3相交,即任意2个Ai相交,但任意3个Ai不相交。所以{A1,A2,A3}为A的一个指数为2的R族。
更直观地说,有n个东西,设定m个条件,从这些条件中任选k个,总能找到至少一个东西满足这k个条件,但没有一个东西能满足k+1个条件。

❻ 数学中z7是什么意思

Z+7表示正整数集合。
正整数集合也可以用N+表示,N是自然数集合。在数学里用大写符号 Z 表示全体整数的集合,包括正整数、0、负整数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。z数学代表整数集合,Z+表示正整数集合。和整数一样,正整数也是一个可数的无限集合。在数论中,正整数,即1、2、3,但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。

❼ 集合族是什么意思求大神帮助

在集合论和有关的数学分支中,给定集合 S 的子集的搜集 F 叫做 S 的 子集族 或S 上的 集合族 。更一般的说,无论什么任何集合的搜集都叫做 集合族 。 例子[编辑] 幂集 P (S) 是在 S 上的集合族。 n 元素集合 S 的 k 元素子集 S (k) 形成了集合族。 抽象单纯复形是集合族。 所有序数的类 Ord 是“大”集合族;它自身不是集合而是真类。 样本空间的某些子集组成的集合叫做集合族。 性质[编辑] S 的任何子集族自身都是幂集 P (S) 的子集。 不论什么集合族都是所有集合的真类(全集) V 的子类。 超图是集合 V (顶点集合)加上 V 的非空子集族(边)。

❽ 数学上讲的tribu是什么意思

tribu 的中文意思是 3倍
就是使原来的那个数 乘以3

另外它和σ代数是什么关系

2个写在一起 就是 3σ 的意思

❾ 谁知道英文大写花体F在数学符号中是什么意思怎么读

你只要读它为"函数"就可以了

❿ 集合族和一般集合有什么区别

1、研究对象不同:

在集合论和有关的数学分支中,给定集合S的子集的搜集F叫做S的子集族或S上的集合族。集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。

2、性质不同:

集合族中S的任何子集族自身都是幂集P(S)的子集。不论什么集合族都是所有集合的真类(全集)V的子类。超图是集合V(顶点集合)加上V的非空子集族(边)。

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

(10)数学中族是什么意思扩展阅读:

集合的运算定律:

1、交换律:A∩B=B∩A;A∪B=B∪A;

2、结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;

3、分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C);

4、对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C;

5、同一律:A∪∅=A;A∩U=A;

6、求补律:A∪A'=U;A∩A'=∅。

阅读全文

与数学中族是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068