㈠ 高中数学必修和选修一共多少本
必修1,2,3,4,5,
文科:选修1--1,1--2,理科:2--1,2--2,2--3,
选讲:4---4,4---5.
㈡ 高二数学课本学必修几
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。
高考范围的书:
高考范围为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,而选修4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲),三选二,共10本。
就教学进度来说,各个学校可根据实际情况安排。就我们学校来说,先学习高考考察的主干知识,再学习零散知识,速度由慢到快,深度有难到易,难度自始至终与广东高考理科数学难度相当。
高一第一学期刚开学不讲上述11本书的内容,而是对初、高中的知识进行衔接,继续深入探讨二次函数的性质和应用,韦达定理,二次根式,因式分解等。接着进入必修1的学习,然后是选修2-2的导数部分。本学期学习的核心是函数与导数。
高一第二学期学习必修5的数列部分,必修4,核心是数列、三角与平面向量。
高二第一学期先学习选修4-1,再学习必修2的立体几何部分,然后是必修2和选修2-1的解析几何部分的直线、圆和椭圆,核心是平面几何、立体几何和解析几何。
高二第二学期继续必修2和选修2-1的解析几何部分的双曲线、抛物线的学习,接着是隶属与解析几何的选修4-4,再学必修5的线形规划部分,再学选修2-3的其余部分(包括排列组合与二项式定理、概率与统计)。
接着完成选修2-2的其余部分(包括定积分、数学归纳法、复数),选修2-1其余部分(包括常见逻辑用语、空间向量),必修5和选修4-5的不等式部分,必修3(算法)等零散知识的学习,结束高中理科数学课程。本学期的主干是解析几何、概率和统计、排列组合二项式定理。
㈢ 高中数学选修1-1和2-1有什么不一样
1、学习对象不一样
高中数学教材的整个选修1系列是文科生选修,而选修2系列是理科生学习的。
2、内容有些不一样
高中数学选修1-1是常用逻辑用语、圆锥曲线与方程、导数及其应用。
高中数学选修2-2常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
(3)高中数学选修丨2学多少扩展阅读:
选修1-1的学习意义:
《普通高中课程标准实验教科书.选修1-1》
正确地使用逻辑用语是现代社会公民应该具备的基本素质。无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
微积分的创立是数学发展的里程碑,它的发展及广泛应用,开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。
㈣ 高中数学选修属于高几学的
选修2-2,也就是高二的第二学期开始学导数~
㈤ 高中数学有多少本必修,多少本选修,高一学哪几本,高二学哪几本,
高中数学必修5本
选修部分,理科生是选修2系列,文科生是1系列.
高一是必修1到4,半个学期完一本
高二学必修5和选修,高三复习
高一必修1学函数,包括指数函数和对数函数和幂函数
必须二是立体几何和解析几何,我认为最难
必须三学算法,统计,概率
必须四学三角函数,平面向量
㈥ 高中数学必修1.2.3.4.5.和选修系列1.2.3.4分别是高几学的理科是哪些
不同学校不一样,通常来说
理科
必修 全学
选修 选修2-1 2-2 2-3 和 选修4-1 4-4
高一 必修1,必修4, 必修5,必修3 或者(1.4.5.2)
高二 必修2,选修所有
高三 复习全部
㈦ 高中数学必修和选修有几本
高中数学共学习11本书,其中必修5本,选修6本。
必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;
选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)。
(7)高中数学选修丨2学多少扩展阅读:
必修一
1、集合
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2、函数概念与基本初等函数
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例。
采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
㈧ 高中数学选修有几本都是什么
高中数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5。(不等式选讲)。
A版有13本和B版有14本
数学1-1 (选修)A版
数学1-2 (选修)A版
数学2-1 (选修)A版
数学2-2 (选修)A版
数学2-3 (选修)A版
数学3-1 (选修)A版 数学史选讲
数学3-4 (选修)A版 对称与群
数学4-1 (选修)A版 几何证明选讲
数学4-2 (选修)A版 矩阵与变换
数学4-4 (选修)A版 坐标与参数方程
数学4-5 (选修)A版 不等式选讲
数学4-6 (选修)A版 初等数论初步
数学4-7 (选修)A版 优选法与试验设计初步
数学1-1 (选修)B版
数学1-2 (选修)B版
数学2-1 (选修)B版
数学2-2 (选修)B版
数学2-3 (选修)B版
数学3-1 (选修)B版 对称与群
数学3-4 (选修)B版 数学史选讲
数学4-1 (选修)B版 几何证明选讲
数学4-2 (选修)B版 矩阵与变换
数学4-4 (选修)B版 坐标系与参数方程
数学4-5 (选修)B版 不等式选讲
数学4-6 (选修)B版
数学4-7 (选修)B版 优选法与实验设计初步
数学4-9 (选修)B版 风险与决策
《高中数学》是由人民教育出版社出版的图书。
该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
㈨ 高中数学一共要学几本书,几本选修
高中数学课本数目因各地使用的教材不同会有所不同,人教版教材一共需要学习八本书,分别为:
1、必修:
高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、高中数学必修五。
2、选修:
高中数学选修一、高中数学选修二、高中数学选修三。
高中数学由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制。
内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
㈩ 高中数学选修有哪些
数学1:集合;函数概念与基本初等函数Ⅰ 数学2:立体几何初步(柱锥台);平面解析几何初步(直线与圆的方程) 数学3:算法初步;统计;概率 数学4:三角函数;平面向量;三角恒等变换 数学5:解三角形 11.1正弦定理 11.2余弦定理 11.3正弦定理、余弦定理的应用 数列;不等式 选修系列1 1-1 第1章 常用逻辑用语 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线 2.5圆锥曲线与方程 第3章 导数及其应用 3.1导数的概念 3.2导数的运算 3.3导数在研究函数中的应用 3.4导数在实际生活中的应用 1-2 第1章 统计案例 1.1假设检验 1.2独立性检验 1.3线性回归分析 1.4聚类分析 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3公理化思想 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 5.2结构图 选修系列2 2-1 第1章 常用逻辑用语 1.1命题及其关系 1.2简单的逻辑连接词 1.3全称量词与存在量词 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线 2.5圆锥曲线的统一定义 2.6曲线与方程 第3章 空间向量与立体几何 3.1空间向量及其运算 3.2空间向量的应用 2-2 第1章 导数及其应用 1.1导数的概念 1.2导数的运算 1.3导数在研究函数中的应用 1.4导数在实际生活中的应用 1.5定积分 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法 2.4公理化思想 第3章 数系的扩充与复数的引入 6.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 2-3 第1章 计数原理 1.1两个基本原理 1.2排列 1.3组合 1.4计数应用题 1.5二项式定理 第2章 概率 2.1随机变量及其概率分布 2.2超几何分布 2.3独立性 2.4二项分布 2.5离散型随机变量的均值与方差 2.6正态分布 第3章 统计案例 3.1假设检验 3.2独立性检验 3.3线性回归分析 4.4聚类分析