Ⅰ 数学中常用名词有哪些
1、平方
平方是一种运算,比如,a的平方表示a×a,简写成a²,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。
2、立方
立方也叫三次方。三个相同的数相乘,叫做这个数的立方。如5×5×5叫做5的立方,记做5³。
3、方程
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
4、解集
解集是一个数学用语,指以一个方程(组)或不等式(组)的所有解为元素的集合叫做该方程(组)或不等式(组)的解集。表示解的集合的方法有三种:列举法、描述法和图示法。解集作为数学中的重要工具,在数学中有着十分广泛的应用。
5、排列
排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当m=n时,这个排列被称作全排列(all permutation)。
Ⅱ 数学单位有哪些
数学单位有很多,例如:
长度单位:毫米,厘米,分米,米,千米....
面积单位:平方毫米,平方厘米,平方分米,平方米,公顷,平方千米....
体积单位:立方毫米,立方厘米(毫升),立方分米(升),立方米.....
时间单位:秒,分,小时....
重量单位(质量单位):克,千克,斤,公斤,吨....
中国传统的长度单位有里、丈、尺、寸、寻、仞、扶、咫、跬、步、常、矢、筵、几、轨、雉、毫、厘、分,等。其基本换算关系如下:
1丈=10尺;1尺=10寸;1寸=10分;1分=10厘;
1丈≈3.33米;1尺≈3.33分米;1寸≈3.33厘米;
1千米(km)=1000米;1米(m)=100厘米;1厘米(cm)=10毫米
1里=150丈=500米;2里=1公里(1000米)。
(2)数学有哪些扩展阅读:
面积单位从小到大的顺序主要有:mm²(平方毫米)、cm²(平方厘米)、dm²(平方分米)、m²(平方米)、hm²(公顷)、km²(平方千米)。在国际单位制(SI)中,标准单位面积为平方米(平方米),面积为一米长的正方形面积
1立方米=1000升=1000立方分米=1,000,000毫升=1000000立方厘米=1,000,000,000立方毫米
1升=1立方分米=1000毫升=1000立方厘米=1,000,000立方毫米
1立方英尺=1(ft³)=0.0283立方米(m³)=28.317升(liter)=28.317立方分米(dm³)=28317立方厘米=28317000立方毫米
时间单位,是7种基本单位之一,长度、时间、质量、物质的量、光照度、电流 和(热力学)温度 是七种基本单位。 本词条中时间单位以时间从大到小列。
现时每昼夜为二十四小时,在古时则为十二个时辰。当年西方机械钟表传入中国,人们将中西时点,分别称为“大时”和“小时”。随着钟表的普及,人们将“大时”忘淡,而“小时”沿用至今。
Ⅲ 我们身边的数学有哪些
生活中的数学应用:
1、求面积:例如:在一个高为4 m长为6 m的楼梯表面铺地毯,楼梯宽2m,求地毯的面积。
许多学生家里楼梯上都铺设了地毯,要买多少就要计算地毯长度,从图中可以看出应用平移的知识来解答简单方便,把楼梯步中横线往下移可组成AC,纵线往左移可组成BC,这样地毯长为4+6=10米,面积为2×10=20平方米。
2、求概率:概率是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率。
3、手指计数
人类的十个手指是个天生的“计数器”。原始人不穿鞋袜,再加上十个足趾,计数的范围就更大了。至今,有些民族还用“手”表示“五”,用“人”表示“二十”,据推测,“十进制”被广泛运用,很可能与手指计数有关。
4、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
5、迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。也是简单的统计学问题。
Ⅳ 数学有哪些分类
数学一般可分为初等数学和高等数学。初等数学就是高中及其以前学的数学内容,那些都是数学的皮毛;高等数学是大学开始接触的,它是以微积分为基础的数学研究模式,可以说微积分的发明是人类历史上最伟大的发明,如果没微积分的话,估计我们还生活在几百年前。
当然数学还有很多分支,比如概率和数理统计,线性代数,解析几何,离散数学,复变函数,黎曼几何,拓补学,还有比较新兴的模糊数学(模糊数学是智能计算机的基础)……当然还有很多,但敝人知识空间有限,只涉猎了这么点,只能帮你提供这些了。(补充一点,数学物理方程其实就是偏微分方程(组)的求解问题。它只是数学在物理上的简单运用,我觉得应该不算是数学的一个分类)
Ⅳ 数学一包括哪些内容
主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(5)数学有哪些扩展阅读
初级数学的基本内容
一、小学
整数、分数和小学的四则运算、数与代数、空间与图形、简单统计与可能性、一元一次方程,圆,正负数,立体几何初步。
二、初中
代数部分: 有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数,二次函数,反比例函数),简单统计,锐角三角函数,方程、(一元一次方程,二元一次方程组,一元二次方程,三元一次方程组),因式分解、整式、分式、一元一次不等式。
几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点是相似三角形),圆的基本性质,
三、高中
集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式,排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。
Ⅵ 数学有哪些知识
加减乘除,小数分数,单位换算,太多了
Ⅶ 生活中的数学有哪些
有很多,举几个例子吧。1、风扇的扇叶绕着中心旋转:过一点有无数条直线。2、三角形的支架:三角形具有稳定性。3、四边形的推拉门:四边形具有不稳定性。4、速度、时间、路程三者的函数关系。5、用坐标表示地理位置。6、买彩票是否能中奖,概率问题。7、风筝飞翔平稳是轴对称图形的性质的应用。
Ⅷ 数学能力有哪些
数学能力一般是指抽象思维能力、逻辑推理与判断能力、空间想象能力、数学建模能力、数学运算能力、数据处理与数值计算能力、数学语言与符号表达能力等
2、所谓数学能力是指由计算能力、初步的逻辑思维能力、空间观念与思维的深刻性、敏捷性、灵活性、广阔性、创造性等所组成的开放性动态系统结构
48
分享2
踩
数学不会怎么办_告诉你一个简单解决的方法
根据文中提到的数学为您推荐
数学不会怎么办,数学怎么才能获得高分, 揭露别人孩子学习好的高分秘诀,学习找不到方法,视频攻略反复学习,1天1小时,名师在线答疑,定制提分计划,精准提分
明望教育咨询(山东)有限公司广告
怎么学好数学_四个步骤告诉你如何提高孩子学习成绩
根据文中提到的数学为您推荐
怎么学好数学孩子学成绩一直在班级垫底,自从用了ces学习法,期末考试已约升至班级前十,找对了学习方法,才能起到事半功倍的效果!
武汉浩瀚天成文化传播有限公司...广告
数学能力有哪些
专家1对1在线解答疑惑
去提问
— 你看完啦,以下内容更有趣 —
高中数学思维能力_高中全套重难点知识汇总资料
高中数学思维能力 亲身经历,高考提分有效的方法!让你在两个月中达到理想成绩!
Ⅸ 数学类专业有哪些
数学类专业包括数学与应用数学、信息与计算科学、数理基础科学3个专业。
数学与应用数学专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
信息与计算科学专业(原名:计算数学,1987年更名为计算数学及其应用软件,1998年教育部将其更名为信息与计算科学),是以信息领域为背景。
数学与信息,计算机管理相结合的计算机科学与技术类专业。信息与计算科学专业培养的学生具有良好的数学基础,能熟练地使用计算机,初步具备在信息与计算机科学领域的某个方向上从事科学研究,解决实际问题,设计开发有关计算机软件的能力。
数理基础科学专业介绍
数理基础科学专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。
数理基础科学专业的毕业生在毕业以后,可以在物理学、数学领域、信息与计算科学、计算机信息处理、经济、金融等部门从事研究、教学、应用软件开发或者是管理部门从事一些实际应用、技术开发、研究或者管理工作。
Ⅹ 数学中有哪些数
1.质数与合数
质数,又名素数,是指只能被1和自身整除的数。如2,3, 5, 7, 11……
合数,是指除了1与自身之外还有其他的约数,如4,除了1与4之外,它还能被2整除。
2、公因数、最大公约数和最小公倍数
公因数,又称公约数,在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
求几个整数的最大公因数,只要把它们的所有共有的素因数连乘,所得的积就是它们的最大公因数。
3、 实数与虚数
负数开平方,在实数范围内无解。
数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。
于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。
虚数单位为i, i即根号负1。
3i为虚数,即根号(-3), 即3×根号(-1)
2+3i为复数,(实数部分为2,虚数部分为3i)
复数和虚数不一样,形如a+bi的数。式中a,b 为实数,i是 一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张.
4、、有理数与无理数
有理数(rational number):能精确地表示为两个整数之比的数.
如3,-98.11,5.72727272……,7/22都是有理数.
整数和通常所说的分数都是有理数.有理数还可以划分为正有理数,0和负有理数.
无理数指无限不循环小数
非负整数集(或自然数集)记作 N 都指的那些?
N---0和自然数,如:0。1。2。3。。。
正整数集 记作 N + 都指的那些?
N+----正整数,如:1。2。3。。。。
整数集 记作 Z 都指的那些?
Z---正整数和负整数和0,如:。。。-2。-1。0。1。2。3。。。
实数集 记作 R 指的那些 ?
R---有理数和无理数
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
5、 整数
整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。 一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).
我们以0为界限,将整数分为三大类 1.正整数,即大于0的整数如,1,2,3,…,n,… 2.0 既不是正整数,也不是负整数,他是介于正整数和负整数的数 3.负整数,即小于0的整数如,-1,-2,-3,…,-n,…
6、 奇数与偶数
奇数(英文:odd)数学术语 , 整数中,能被2整除的数是偶数,不能被2整除的数是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。 奇数包括正奇数、负奇数。
关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数。 (2)奇数跟奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数。 (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。 (4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。 (5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。 (6) 奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.) (7)奇数的平方除以8余1
7、 基数
在数学上,基数(cardinal number)也叫势(cardinality),指集合论中刻画任意集合所含元素数量多少的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一 一对应,是两个对等的集合。此外还有语言学和军事上的基数。
8、 浮点数
浮点数是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法。
9、 布尔值
布尔值是 true 或 false 中的一个。动作脚本也会在适当时将值 true 和 false 转换为 1 和 0。布尔值经常与动作脚本语句中通过比较控制脚本流的逻辑运算符一起使用。