A. 组合数学和离散数学有什么区别
组合数学(combinatorial mathematics)
广义
有人认为广义的组合数学就是离散数学,也有人认为离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。
狭义
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。
离散数学(Discrete mathematics)是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了计算机科学离散性的特点。
内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。
离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。
B. 离散数学 组合数学有什么区别
1、意义不同:
广义的组合数学就是离散数学,离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。组合数学是一门研究离散对象的科学,狭义的组合数学主要研究满足一定条件的组态也称组合模型的存在、计数以及构造等方面的问题。
2、内容不同:
离散数学是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,内容包含数理逻辑、集合论、代数结构、图论、组合学、数论等。
组合数学主要研究满足一定条件的组态也称组合模型的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。
(2)组合数学什么意思扩展阅读:
1、离散数学是传统的逻辑学,集合论包括函数,数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数包括代数系统,群、环、域等,布尔代数,计算模型等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
2、组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物学等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。
3、组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在做数值计算。
C. 排列组合c和a的区别是什么意思
一、定义不同:
(1)排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。
(2)组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
二、计算方法不同:
(1)排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
(2)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
(1)A(4,2)=4!/2!=4*3=12
(2)C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列、组合、二项式定理公式口诀:
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
D. 数学中的排列组合是什么意思
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
E. 排列组合怎么理解,什么时候用排列什么时候用组合
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列与组合一个最大的区别就是有没有顺序
以一个吃水果为例
假设有4种水果:苹果,香蕉,西瓜,橘子
比如你每顿饭可以选2种水果,你有多少种选发了,那就要用组合,C4选2=6
比如(苹果,香蕉)=(香蕉,苹果),具体的就不全部列举
但是,每顿饭可以种2种水果,先吃什么,后吃什么,有关系
这时候就要排列(苹果,香蕉)不=(香蕉,苹果),有A4选2种=12
F. 什么叫排列组合
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
排列、组合、二项式定理公式口诀:
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
G. 排列组合的A和C都是什么含义怎么算
A(m,n)m在下,n在上是代表从m个元素里面任选n个元素按照一定的顺序排列起
C(m,n)m在下,n在上是代表从m个元素里面任选n个元素进行组合
C的计算:下标的数字乘以上标的数字的个数,且每个数字都要-1.再除以上标的阶乘。
如:C5 3(下标是5,上标是3)=(5X4X3)/3X2X1。
3X2X1(也就是3的阶乘)
A的计算:
跟C的第一步一样。就是不用除以上标的阶乘。
如:A4 2 = 4X3 。
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
H. 排列组合是什么
你好!
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列数公式:从n个不同元素中取出m个不同元素进行排列(m,n为正整数且n≥m),总方法数为
m n!
A =——————,其中“!”符号为阶乘,意思是m!=1x2x3x……x(m-1)xm
n m!
组合数公式:从n个不同元素中取出m个不同元素为一组(m,n为正整数且n≥m),总方法数为
m n!
C =——————
n m!(n-m)!
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
排列 :从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
排列
公式P是排列公式,从N个元素取M个进行排列(即排序).
(P是旧用法,现在教材上多用A,即Arrangement)
组合
公式C是组合公式,从N个元素取R个,不进行排列(即不排序)。
公式
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1) . 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
符号
常见的一道题目
C-组合数 A-排列数 (旧在教材为P) N-元素的总个数 R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120 C-Combination 组合 P-Permutation排列 (现在教材为A-Arrangement) 一些组合恒等式 组合恒等式
排列组合常见公式 kCn/k=nCn-1/k-1(a/b,a在下,b在上) Cn/rCr/m=Cn/mCn-m/r-m 排列组合常见公式
希望能帮到你,满意望采纳哦。