导航:首页 > 数字科学 > 如何对数学概念进行拓展和延伸

如何对数学概念进行拓展和延伸

发布时间:2022-08-29 11:26:43

⑴ 在小学数学中如何将知识进行有效拓展

我们一般认为,数学的能力,分为两种水平:一种是独立创造具有社会价值的数学新成果的能力;一种是在数学学习过程中,学习数学的能力。我们应该培养学生怎样的数学能力呢?无疑首先应该培养学生的“数学学习能力”,因为数学学习毕竟是将来学习数学,运用数学,以及进行数学创新的基础,也正是基于这一点,我们的传统教学,特别重视数学学习能力的培养,采取的方法是“满堂灌”──让学生多听一点;教出的学生是“记忆型”──学生的大脑都成了知识的仓库。但是,学习数学的最终目的,却是数学的运用与创新。不论是数学的运用,还是数学创新,都离不开探索,没有了探索,任何学科--包括数学,都会失去灵魂。现在有许多人都在思考:都是中国人要领先,可到了成年以后,我们的研究成果怎么就不如别人呢?有人说,中国水平和世界水平,只差“一步”,这“一步”是什么呢?我认为,我们教育的症结就在于,我们太重视学生的学习能力,而忽略了探索和创新能力的培养。长期以来,我们已经习惯了“老师教”,“学生学”的教学模式,特别是数学,她的抽象和严密,几乎让人感觉到,数学就是这么呆板吧。我们常说,学生是学习的主人,但有时候,我们的教育,却让学生处于从属地位,长此以往的结果,只能使学生对数学敬而远之,甚至是畏而远之。我认为,这应该是我们教育的失败。因此,改革数学教学,把培养学生的探索能力也作为我们教学活动的重要一环,实在是必要、重要和紧迫。 培养学生的数学探索拓展能力,是一项系统的工程,它包含了许多方面,以下是我在教学实践中,培养学生数学探索能力的几点尝试,它包括培养兴趣、指导方法、鼓励质疑、鼓励创新等几个方面。 一、指导学习方法,给学生拓展学习的钥匙 1.教会学生“读”,这主要用来培养学生的数学观察力和归纳整理问题的能力。我们知道,数学观察力是一种有目的、有选择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培养学生对数学材料的直观判断力,这种判断包括对数学材料的深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。这在预习和课外自学中尤为重要。 2.鼓励学生“议”,在教学中鼓励学生大胆发言,对于对于那些容易混淆的概念,没有把握的结论、疑问,就积极引导学生议,真理是愈辩愈明,疑点愈理愈清。对于学生在议中出现的差错、不足,老师要耐心引导,帮助他们逐步得到正确的结论。 3.引导学生勤“思”,从某种意义上来说,思考尤为重要,它是学生对问题认识的深化和提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系,适时地组织引导学生展开想象:题设条件能否减弱?结论能否加强?问题能否推广?等等。 二、鼓励质疑,激起向权威挑战的勇气 我们会经常遇到这样的情况:有的同学在解完一道题是时,总是想问老师,或找些权威的书籍,来验证其结论的正确。这是一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创新。长此以往的结果,只能变成唯书本的“书呆子”。 教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方面。 三、鼓励学习创新,让学生学有创见 在数学教学中,我们不仅要让学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造性地学习。 1.注意培养学生发现问题和提出问题的能力,老师要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 2.引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。

⑵ 如何在数学课中培养学生的拓展性思维

一、培养良好的思维习惯
据调查研究,良好的思维习惯一般包括四大块:深刻性、敏捷性、灵活性和独创性,当然,这些良好的思维习惯养成要经过反复的练习而形成,它们是条件反射的长期积累,是反复强化的产物,因此,家长在平时引导孩子学习时,要注重培养孩子这四方面的能力。
家长们也许会问了,怎样培养孩子们良好的思维习惯呢?首先,要引导孩子在做题时养成全神贯注、心无旁骛的专注力,不难发现,孩子们回家做作业时总不能专注于眼下的作业,更多的可能是一边做作业,一边看手机或听歌,这样对于思考数学来说是非常不利的,家长要及时制止孩子这样的做法。当然,在孩子全身心投入学习以后,家长一定不能去中断他的投入思考状态。
二、学会质疑,勇于提问
问题是所有答案的来源,在每一次考试试卷发放下来之后,家长除开根据情况分析和激励孩子之外,更别忘了让孩子自己去分析自己的错题,可以通过提问的方式来逐步引导孩子分析错题,归纳总结出一些解题技巧,这还不算,我们都知道,一道题目不止一种解题方法,
要想让孩子学会提问,父母首先要做到善于向孩子提问,经常和孩子谈论一些他们感兴趣的话题,从而引导孩子学会思考和提问。在提问孩子的过程中,内容要符合孩子的年龄和知识范围,不能提得过难或过易,不然会挫伤孩子思考的积极性。孩子经常处于提问和思考的环境之中,自然会慢慢学会提出自己的疑问,进而养成质疑的习惯。
父母要掌握和孩子说话的技巧,启发、引导孩子的好奇心,比如不马上为孩子提供答案,而是进一步提出疑问和悬念等方式,激起孩子更强的求知欲。
孩子对事物提出自己的质疑时,父母要给予适当的赏识,让孩子更加大胆地去质疑。父母千万不要否定孩子的意见,要站在孩子的角度,从他们的年龄特点和思考方式出发,积极肯定他们的想法。

⑶ 如何上好数学概念课

因此,我们教师要结合学生的实际,挖掘教材中的有利因素,选择行之有效的方法,帮助学生理解概念。
一、应重视概念的产生过程
有的教师不讲概念产生的背景,也不经历概念的概括过程,用例题教学替代概念的概括过程,认为应用概念的过程就是理解概念的过程。殊不知没有过程的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性,难以实现概念的正确、有效应用,质量效益都无保障。
二、注重感性,符合学生认知规律
从具体到抽象,是人类认识的基本规律,中学生的抽象思维能力还处在发展过程中,其思维能力仍以直观感性为主。因此,我们在引入数学概念时,应从直观入手,巧妙地引导学生理解并掌握抽象的概念。概念教学要避免满堂灌,注入式的陈旧教学模式,就要在概念教学方法上创新。在教学方法上创新,应突出体现在问题提出和解决的方法上,即:教师提出问题的方法和引导学生善于提出质疑的思维方法。概念教学的首要环节不是向学生展示概念,而是结合概念自身的特征为学生创设一系列巧妙问题情景,极大限度地调动学生的参与意识,训练其思维能力。
三、前后联系,准确把握不同概念的区别和联系
数学知识的系统性很强,数学概念也不是孤立的,教师应从有关概念的逻辑联系和区别中,引导学生理解相关的数学概念,从而在学生头脑中形成一个比较完整准确的概念体系。数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
授人以鱼,不如授人以渔,教师在教学中要在挖掘新概念的内涵与外延的基础上,让学生理解并掌握概念,
改变学生去机械的背概念,套公式的坏习惯,教会学生分析问题、解决问题的能力,全面提高学生的数学素养。

⑷ 如何加强小学数学的概念教学

在小学数学课中,根据教学内容可以划分为概念课、计算课、解决问题课与空间图形课,而几乎在每一个新知识的起始课,学生最先接触到的必然是数学概念。
数学概念是数学知识的“细胞”,是进行逻辑思维的第一要素。一切数学规则的研究、表达与应用都离不开数学概念。概念是构成小学数学基础知识的重要内容,它们是互相联系着的,也是学习其他数学知识的基础,因此上好概念课对小学生的后续学习以及数学素质发展的培养都具有很重要的意义。
一、概念引入的教学策略
儿童学习数学概念有一个学习准备的过程,这个过程就称为“概念的引入”。良好有效的概念引入有助于学生积极主动地去理解和掌握概念。
概念引入的基本策略有:
1、生活实例引入
数学源于生活。结合生活实例引入概念是数学概念教学的一个有效途径。它可以使数学由“陌生”变为“熟悉”,由”严肃”变为“亲切”,从而使学生愿意接近数学。例如:“直线和线段”的教学。可呈现四组镜头让学生观察。镜头一:妈妈织毛衣的场景,突出散乱在地上的绕来绕去的毛线。镜头二:斜拉桥上一根根斜拉的钢索。镜头三:一个女孩打电话,用手指绕着弯弯曲曲的电话线。镜头四:建筑工地上用绳子拴住重物往上拉的画面,突出笔直的钢丝绳。然后提问:“刚才你在屏幕上看到了什么?你能给这些线分分类吗?你有什么办法使这些线变直?”这些熟悉的生活现象不仅唤起了学生对生活的回忆,更激起了学生探索欲望,为学生提供了“做数学”的机会。
2、从直观操作引入
组织学生动手操作,可使学生借助动作思维,获得鲜明的感知。如:教学“平均分”的概念,可先引导学生动手操作,把8个桃子分给2只猴子,看看有几种不同的分法。然后进行比较,说说你认为哪种分法最公平。从而使学生认识到:众多的分法中有一种分法是与众不同的,那就是每人分的同样多,从而形成“平均分”的表象。
3、从旧知迁移引入
数学概念之间的联系十分紧密,到了中高年级,许多概念可以通过联系相关的旧概念直接引入。例如:“质数与和数”的教学。由于质数、和数是通过约数的个数来划分的,所以在教学时,可以从复习约数的概念入手,然学生找出1、2、6、7、8、11、12、15的所有约数。在引导学生观察比较,他们各有几个约数?你能给出一个分类标准,把这些数分分类吗?从而为引出质数、和数做好铺垫。又如:“乘法”的概念可从“加法”来引入,“整除”的概念可从除法中的“除尽”来引入。
4、从情景设疑引入
丰富的情景不仅能激发学生的学习欲望,而且有利于学生主动观察和积极思考,还有利于培养学生通过观察发现并提出问题的能力。例如:关于“体积”概念的教学,可以先将两个同样的玻璃容器盛满水,然后拿出两个大小明显不等的石块,分别放进两个玻璃容器中,让学生观察,出现了什么现象,并想一想,为什么石块放进容器后,水要往外溢?为什么放进较大石块的容器,流出的水较多?从而让学生获得石块占有空间的感性认识,为引出“体积”做好了准备。
5、从动手计算引入
有些数学概念很难让学生观察或操作,但可以组织学生进行计算,使学生获得感性认识。例如:“循环小数”概念的教学。可先让学生进行小数除法计算,10/3,58.6/11。在计算过程中,学生会发现他们都除不尽,并且注意到当余数不断重复出现时,商也不断跟着重复出现,从而感知循环小数。
引进数学概念的方法较多,有时需要配合使用几种方法才能收到良好的教学效果。
二、概念建立的教学策略
概念建立是概念教学的中心环节。小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维像抽象逻辑思维过度的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。数学概念的形成,一般要经过直观感知---建立表象---解释本质属性三个过程。
1、强化感知
感知是人们认识事物的开始,没有感知就不可能认识事物的本质和规律。因此在概念教学中,首先根据教学内容有目的、有计划地向学生提供丰富的感性材料,引导学生观察,并结合学生自己的动手操作,丰富感性认识,为概念形成做好准备。在组织学生进行感知活动时,要有意识地把感知的对象从背景中凸现出来,以便学生清晰地感知。同时,变静止的为活动的,给学生留下清晰而深刻的印象。
2、重视表象
表象是人脑对客观事物感知后留下的形象,是多层次感知的结果。表象接近感知,具有一定的具体性,同时又接近于概念,具有一定的抽象性,它起着从感知到概念的桥梁作用。建立表象,可以使学生逐步摆脱对直观材料的依赖,克服感知中的局限性,为揭示概念的本质属性奠定基础。因此,在演示或操作结束后,不要急于进行概括,可以让学生脱离直观事例,默默地回想一下,唤起头脑中的表象,并通过教师的引导,是表象有模糊到清晰,由分散到集中,进而过渡到抽象概括。如:在直观感知黑板面、课桌面、课本面是长方形的基础上,抽象出几何图形。
3、揭示本质属性
在学生充分感知并形成表象后,教师要不失时机地引导学生进行分析、比较、综合,概括出事物的本质属性,并把这些本质属性推广到同类事物的全体,从而形成概念。
如:“三角形的认识”教学。首先让学生说出日常生活中常见的三角形实物;接着在屏幕上出示三角旗、红领巾、三角板等实物图,提问这些物体都是什么形状?然后教师去掉图中的颜色,只留下三个物体的外框,让学生说说这三个图形的相同点和不同点。舍弃这三种物体的颜色、大小、材料等非本质的东西,抽象出三角形的本着特征:都是有三条线段组成的。接着教师出示三条线段,在屏幕上慢慢“围成”一个三角形,形象地突出了“围成”这一特征,是学生准确理解:“由三条线段围成的图形叫三角形”。
4、深入理解概念的内涵和外延
当用定义把概念的本质属性揭示出来时,学生对概念的理解还是肤浅的。因此,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便学生在理解的基础上掌握概念。一般可采取以下方法。
(1)析概念的关键性词语。如在概括出分数的概念后,可进一步剖析:①单位“1”表示什么意思?②“1”为什么加引号?③“平均分”表示什么意思?④“表示这样的一份或几份”是什么意思?只有把这些观念词语的意思弄清楚了,才能对分数的概念有深刻的理解。
(2)利用概念的肯定例证和否定例证。肯定例证有利于概念的概括,否定例证有利于概念的辨别。因此教师不仅要充分运用肯定例证帮助学生正面理解概念的内涵,同时还及时运用否定例证促进学生对概念的辨析。如:学习了“循环小数”的概念后,可举若干肯定例证和否定例证。
(3)运用变式突出概念的内涵与外延。“变式”是指本质属性不变而非本质属性发生变化。例如教学“三角形的高”时,当学生在标准图形做出高之后,可出示变式图形,然学生根据概念做出高。这样即使“三角形的高”的内涵到强化,又使外延到充分揭示。如果只提供标准图形,学生只会在标准图形上做高,而不会再变式图形上做高,这样就会缩小“三角形的高”这一概念的外延。
三、概念巩固的教学策略
学生对概念的掌握不是一次就能完成的,要由具体到抽象,再由抽象到具体多次往复。当学生初步建立概念后还需要运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用加深对概念的理解和记忆,使新建立的概念得以巩固。
1、促进记忆
为了巩固所获得的新概念,首先需要记忆。教学中,我们必须遵循记忆的规律,指导学生对概念进行记忆。记忆有机械记忆、理解记忆。概念的机械记忆就是按概念在课本上的表述进行记忆。小学生机械记忆的能力一般比较强,但这种记忆如不及时上升到理解记忆,就很容易被遗忘,即使记住了也很难运用。概念的理解记忆是在明确了概念的内涵和外延,并使新概念和学生原有的知识经验建立联系后进行的记忆。
2、自举实例
自举实例就是让学生把已获得的概念简单地运用于实际,通过实例来说明概念,来加深对概念的理解。有经验的教师根据小学生通常带有具体性的特点,在学生通过分析、综合、抽象概括出概念以后,总是让他们自举例证,并把概念具体化。如在学生学习乘法的初步认识后,然学生找找生活中哪些问题可以用乘法解决。
3、强化应用
学生是否牢固地掌握了某个概念,不仅在于能否说出概念的名称和定义,还在于能否正确地应用。通过应用可以家生理解,增强记忆,提高数学的应用意识。
概念的应用可以从概念的内涵和外延两方面进行。概念的内涵的应用有:①复述定义或根据定义填空;②根据定义判断是非;③根据定义推理;④根据定义计算。概念外延的应用有:①举例;②辨认肯定例证或否定例证,并说明理由;③按指定条件从概念的外延种选择事例;④将概念按不同的标准分类。
4、注意辨析
随着学习的深入,学生掌握的概念不断增多,有些概念的文字表述相同,有些概念的内涵相近,学生容易混淆,如质数与互质数、整除与除尽、和数与偶数等。因此在概念的巩固阶段,要注意引导学生运用对比的方法,弄清易混淆概念的联系与区别,以促使概念的精确分化。
总之,小学数学概念教学是小学数学教学的重要组成部分,教师在上概念课的时候一定要根据针对学生的认知规律以及概念的具体特点,采取科学的教学策略来开展教学工作,以保证数学概念教学的质量。在小学数学教学中,帮助学生逐步形成正确的数学概念,是课堂教学的一个重要任务。

⑸ 如何在小学数学教学中有效开展概念教学

数学概念不仅是小学数学知识的基本要素,也是培养和发展学生数学能力的重要内容。对它的理解和掌握,关系到学生学习数学的兴趣,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力。由于小学生的年龄特点,直观形象思维制约了对数学中抽象概念的掌握,导致孩子们在学习和运用概念的过程中,经常出现这样或那样的错误。那么,怎样才能使数学概念教学更有效呢?
一、数学和生活实际联系,引入概念
数学知识来源于生活,又应用于生活。把点滴生活经验变成系统数学知识目的在于使其更好地运用到生活中去,除了在课堂上一些与生活相连的习题更好体会知识的还是生活本生。
例如,在教学《认识钟表》时,认识整时和大约几时这两个数学概念本身就比较抽象,你若直接告诉孩子看钟点的方法:分针对着12,时针对着几就是几时,1时=60分,1分=60秒,孩子未必真正理解,而且长期地这样教学学生就不会去思考,产生一种依赖的心理。因此我们在课起始时便以猜谜揭示课题,而后分认识钟面,认识整时和大约几时三步走。认识钟面环节让学生根据已有经验说说钟面的认识,为了让学生的介绍更为有针对性把提问变成“你知道钟面上有什么?”这样学生根据手中的闹钟很容易回答。在学生拨钟也让学生自由的拨出一些整时并说说在这一时刻在干什么,这样学生对各个时段的认识就能联系生活而不仅仅停留在1~12各个数上。在“两个8时”这一环节,让学生根据生活经验充分的讨论两个8时的存在和不同,再指导学生会照样子用一句话说一说,同时从数学角度提醒学生在平时说话时要注意用上“早晨、上午、下午、晚上” 等词语,这样说起来就更清楚明白。钟面、整时和大约几时三个环节层层递进,每一个环节与学生经验紧密联系。
低年级小学生,由于年龄、知识和生活的局限,理解一个概念主要是凭借事物的具体形象。因此,在低年级数学概念教学的过程中,要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。

二、迎合学生学习兴趣,引入概念
托尔斯泰说过:“成功的教育所需要的不是强制,而是激发学生的兴趣。”兴趣是成功的秘诀,是获取知识的开端,是求知欲的基础。学生对学习数学的兴趣,直接影响到课堂教学效率的高低。抽象的理论如果再加上干巴巴的讲解,必然不会引起学生的学习兴趣。
例如,在教学《认识角》时, 既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。教师可以事先做好一个只露出三角形一个角的教具,让学生观察露出的一个角,判断整个三角形是什么三角形。当露出一个直角时,学生马上回答这是个直角三角形;当露出一个钝角时,学生马上回答这是个钝角三角形;当露出一个锐角时,学生就自然而然地回答这是个锐角三角形。这时教师拿出的却不是锐角三角形,这样,学生就有了悬念:为什么有一个直角的是直角三角形,有一个钝角的是钝角三角形?而一个角是锐角的三角形就不一定是锐角三角形了呢?这时学生强烈的求知欲已经成为一种求知的“自我需要”,学生的学习兴趣得到了激发,使兴趣成为学生学习的动力,为教学新概念创造良好的学习气氛,使学生在获得概念的整个过程中感到学习的快乐。

三、动手操作,引入概念
低段小学生他们爱摆弄东西,什么都想尝试。但若遇到困难而无法解决时,操作的积极性就会下降。所以利用学生这种心理适当安排动手尝试的学习内容可以激发起学生的学习兴趣,更好得形成概念。
例如,在教学《米和厘米》时,在认识了“厘米”以后我安排学生通过测量,看看你身体上哪个部位的长度最接近一厘米。学生的积极性很高,先是拿出尺子不停的比划,然后三五成群的议论开了,积极主动地去寻求答案。在交流想法时,小朋友不仅给出了我想要的答案,更让我收获了不少的惊喜。
学生在操作、实践中获得感性认识,经历“充分感知-丰富表象-领悟内涵”的过程,在头脑中切实、清楚地建立了1厘米的实际长度和空间观念,突出了本节课的教学重点。

四、巧用多媒体,引入概念
应用多媒体辅助教学,充分激活课堂教学中的各个要素,全方位地调动和发挥教师在课堂教学中的主导作用和学生学习的主体作用,建立合理的教与学的关系,
例如,在教学《认识分数》时,我设计了这样一个动画:周末,同学们去野餐,在优美的音乐的声中,一群活泼可爱的小朋友来到了郊外,贴近生活化的情境一下子就吸引了学生的注意力。跟着提出问题:“把8个苹果和4瓶果汁平均分给2人,每人分得多少”?学生回答后动画演示分得的结果,非常直观地显示出“平均分”,加强了学生对“平均分”这个概念的理解。接着提出:“把一个生日蛋糕平均分成2份,每人分得多少”?演示“一半”,提出“一半”用什么数来表示?自然地引出本节课要研究的认识分数。
我们在教学中,要结合概念的特点和学生的实际,灵活掌握使用,优化数学概念教学,提高概念教学的有效性,更好地进行概念教学。

⑹ 怎样进行小学数学概念教学

(希望以下我转载的文章对你有些许帮助)
怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。
一、概念的引入讲述宜直观形象
针对第一学段孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。
夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。在让一年级的孩子认识加减法的时候,我举起双手像音乐指挥家一样,左边一部分,右边一部分,两部分合在一起就用加号,加号就是横一部分,竖一部分组起来的,减法则反过来展示。孩子们看得有趣,记得形象,不但记住了加减号还明白了加减号的用法。在教二年级孩子感受厘米和米时,我让孩子们学会用手势来表示1厘米和1米,使得孩子们在估计具体物体的长度时有据可依。形象生动的讲解,让孩子们自然接受数学符号。教师的语言讲解也要力求符合学生实际,特别是第一次描述时,教师一定要斟字酌句地用孩子能理解的语言尽可能用数学语言简洁地描述。因为对于第一次接触新概念的孩子们来说,第一印象是最为深刻的。当然在适当的时候我们也可以选择让孩子们根据自己的理解来说一说来试着对概念进行解释,一方面同龄人的解释会让孩子们概念的理解更为容易;另一方面也可以锻炼一下孩子的数学语言表达能力。我们要记住:孩子们的数学概念应该是逐级递进、螺旋上升的(当然要避免不必要的重复),以符合学生的数学认知规律。很多时候第一学段的孩子对于部分数学概念,只要能意会不必强求定要学会言传。
二、概念的学习宜多感官参与
心理学家皮亚杰指出:“活动是认识的基础,智慧从动作开始。”书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。
教学《认识钟表》时,鉴于时间是一个非常抽象的概念,时间单位具有抽象性,时间进率具有复杂性,所以在教学时我以学生已有生活经验为基础,帮助学生通过具体感知,调动孩子的多种感官参与学习,在积累感性认识的基础上,建立时间观念,安排了以下一些教学环节。1.动耳听故事,调动情感引入。讲了一个发生在孩子们身边的故事:豆豆由于不会看时间,结果错过了最爱看的动画片。2.动眼看钟面,听介绍,初步了解钟面,形成“时、分”概念。动画是孩子们的最爱,让钟表爷爷来介绍钟面、时针、分针,生动有趣的讲解,让孩子们的心立刻专注地进行于课堂上。3.动嘴说时间,喜好分明。4.动手拨时间。5.动脑画时间(此时在前几项练习的基础上增加了一定难度,如出示一些没有数字的钟面,只有12、3、6、9四点的钟面,让孩子们对时针、分针的位置进行估计)。
通过这些活动,使孩子们口、手、耳、脑并用,自主地钻入到数学知识的探究中去,让时间从孩子们的生活中伶伶俐俐地变成数学知识,形成了数学概念。同时也让学生充分展示自己的思维过程,展现自己的认识个性,从而使课堂始终处于一种轻松、活跃的状态。
另外,教师在教学的过程中也应该对所教概念的知识生长点,今后的发展(落脚点)有一个全面、系统的认识,才能使得所教概念不再那么单薄,变得厚重起来。孩子对概念的来龙去脉有一个更清晰完整的了解,理解起来也就变得轻松。
如果我们能让一个概念变得丰满,变得多彩,让它能从书的平面描述中凸现出来,那么孩子们掌握概念的过程便也会变得立体、多维,他们的学习过程也就变得积极、主动,而这不正是我们数学学习所需要的吗?
三、概念的练习宜生动有趣
第一学段初期的孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。
游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。
四、概念的拓展宜实在有效
美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。
孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。
概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。

⑺ 简答题:如何进行数学概念的教学

教学蹦来就是一个繁杂的过程,哪里能答得简啊,如果要简单的话就四字:认真负责。我不教数学,但找了篇相关的文章;参参考给你。嘿嘿~~很长的;参考里的网站有很多教学论文去看看吧。
所谓数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。就是指那些数学名词和术语。(在小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。)
数学概念是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。因此学好数学的基础关键是数学概念的学习,数学概念教学是数学教学是一个重要的组成部分。

一、数学概念的意义和定义方式

数学概念形成是从大量的实际例子出发,经过比较、分类从中找出一类事物的本质属性,然后再通过具体的例子对所发现的属性进行检验与修正,最后通过概括得到定义并用符号表达出来。实际上应包含两层含义:其一,数学概念代表的是一类对象,而不是个别的事物。例如"三角形"可用符号"△"来表示。这时凡是像"△"这样具有三个角和三条边的图形,则不论大小,统称为三角形,也就是说三角形的概念,就是指所有的三角形:等边的、等腰的、不等边的、直角的、锐角的、钝角......;其二,数学概念反映的是一类对象的本质属性,即该类对象的内在的、固有的属性,而不是那些表面的非本质的属性。例如,"圆"这个概念,它反映的是"平面内到一个定点的距离等于定长的点的集",我们根据这些属性,就能把"圆"和其他概念区分开。
我们把某一概念反映的所有对象的共同本质属性的总和叫做这个概念的内涵,把适合于这个概念的所有对象的范围称为这个概念的外延。通常说,给概念下定义,就是提示内涵或外延。一般说,定义数学概念有以下几种方式:
1.约定式定义
由于数学自身发展的需要,有时也通过规定给术语以特定的意义。如"不等于零的数的零次幂等于1",规定了零指数幂的意义,但要注意,约定式不能随心所欲,必须符合客观规律。
2.描述性定义
数学是一门严谨的科学,每个新概念总要用一些已知的概念来定义,而这些用于定义的已知概念又必须用另一些已知的概念来刻画,从而构成了一个概念的系列。在概念的系列中,是不允许有循环的。因此总有些概念是不能用别的概念来定义。这样的概念,叫做数学中的基本概念,又称为"原名"(或不定义概念、原始概念),它们的意义只能借助于其他术语和它们各自的特征予以形象地描述。如:几何中的点、直线、平面,代数中的集合、元素等。
3.构造式定义
这种定义是通过概念本身发生、形成过程的描述来给出的。如椭圆的定义"平面内与两个定点的距离的和等于定长的点的规迹叫做椭圆"。
4.属加种差定义
如果某一概念从属于另一个概念,则后者叫做前者的属概念,而前者叫做后者的种概念。如实数是有理数的属概念,而有理数是实数的种概念。
在同一个属概念下,各个概念所含属性的差别叫种差。如对于四边形这个属概念,平行四边形和梯形都是它的种概念,它们的种差是:"两组对边分别平行"和"一组对边平行,另一组对边不平行"。
用属加种差来定义概念,"就是把某一概念放在另一更广泛的概念里"来刻画它的意义,通常的方法是用邻近的属加种差来进行表述。如:平行四边形的定义,它的邻近的属概念是四边形,种差是两组对边分别平行,因而平行四边形的定义表述成"两组对边分别平行的四边形叫做平行四边形"。
另外,在教材里,还会遇到一些通过揭示概念的外延的方式给概念下定。如实数的定义:"有理数和无理数统称为实数"。
最后,还需声明:定义是数学概念的方式,以上分析是相对的、不严格的。例如,"异面直线所成角"定义,我们既可以认为它是约定式的,即规定"把经过空间任意一点所作的两条异面直线的平行线所成的锐角或直角叫做异面直线所成的角",也可以把它理解为发生式的:即通过取点、作平行线构成两对对顶角,把其中的锐角或直角叫做异面直线所成的角。总之,我们理解定义并不在于区分它是属于哪种定义方式,而是要明确概念的外延与内涵,然后应用它们去解决问题。

二、怎样进行数学概念教学

对数学概念,即使是那些原始概念,都不能望文生义。在教学中,既要把握它的内涵,这是掌握概念的基础;又要了解它的外延,这样才有利于对概念的理解和扩展;同时,对于概念中的各项规定、各种条件,都有要逐一认识,综合理解,从而印象更深,掌握更牢。
一般来说,围绕一个数学概念,应当力求清楚下列各个方面的问题:
①揭示本质属性。这个概念讨论的对象是什么,有何背景?此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?这些规定和条件的确切含义又是什么?
给出概念的定义、名称和符号,揭示概念的本质属性。例如学习二次函数的概念,先学习它的定义:"y=ax2+bx+c(a、b、c、是常数。a≠0)那么y叫做x的二次函数"。又如,一位教师教学"长方体和正方体的认识"时,在指导学生给不同形体的实物分类引入"长方体"和"正方体"的概念后,及时引导学生先把"长方体"或"正方体"的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫"棱",什么叫"顶点",然后,指导学生分组填好领料单,根据领料单领取"顶点"和"棱",制作"长方体"或"正方体"的模型,边观察边讨论长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出"长方体"和"正方体"的特征,从而使学生充分了解"长方体"和"正方体"这两个概念的内涵和外延。
②讨论反例与特例。对概念进行特殊的分类,讨论各种特例,突出概念的本质属性。例如二次函数的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。
③新旧知识联系。此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?使新概念与原有认知结构中有关观念建立联系,把新概念纳入到相应的概念体系中,同化新概念。例如把二次函数和一次函数、函数等联系起来,把它纳入函数概念的体系中。
④实例确认。辨认正例和反例,确认新概念的本质属性,使新概念与原有认知结构中有关概念精确分化。例如举出y=2x+3,y=3x2-x+5,y=-5x2-6等让学生辨认。
⑤具体运用。根据概念中的条件和规定,能够归纳出哪些基本性质?这些性质在应用中有什么作用?通过各种形式运用概念,加深对新概念的理解,使有关概念融会贯通成整体结构。
以上,我们只是介绍了概念教学过程的一般模式。把这个全过程可归结为三个阶段:
(一)引进概念途径
数学概念本身是抽象的,所以,新概念的引入,一定要坚持从学生的认识水平出发,要密切联系生产、生活实际。不同的概念的引进方法也不尽相同。对于一些原始概念和一些比较抽象的概念,教师应通过一定数量的感性材料来引入,要密切联系生活实际,使学生"看得见,摸得着"。引用实例时一定要抓住概念的本特征,要着力于揭示概念的真实含义。如"平面"的概念,可让学生观察生活中一些如桌面、平静的水面等,通过自己的探索和与同学们的交流得出结论。但是,教师一定要想办法让学生自己得到"无限延伸性和没有厚度"的本质特征。
(二)形成概念的方法
认识一个特殊的心理过程,由于每个学生之间存在一些差异,那么完成这个过程所需的时间也不一定相同。但是就认识过程而言,却不能跳跃。教学中,引入概念、并使学生初步把握了概念的定义以后,还不等于形成了概念,还必须有一个去粗取精、去伪存真、由此及彼、由表及里的改造、制造,必须在感性认识的基础上对概念作辩证的分析,用不同的方式进一步提示不同概念的本质属性。

1.在掌握了概念的本质属性之后,要引导学生作一些练习。例如,引入分解因式的概念后,可选下列一类练习让学生回答。
下列由左到右的变形,哪些是属于分解因式?哪些不是?为什么?
①(x+2)(x-2)=x2-4;
②(a2-9)=(a+3)(a-3);
③a3-9a=a(a2-9);
④x2-y2+1=(x+y)(x-y)+1;
⑤x2y+x=x2(y+1)
通过回答问题,特别是说明理由,可以初步培养学生运用概念作简单判断的能力。同时,每做一次判断,概念的本质属性就会在大脑里重现一次。因而,对于促进概念的形成是行之有效的。
2.通过变式或图形,深化对概念的理解。又如学习梯形这个概念时,可提供如下图形让学生观察:
这里,要注意三点:第一,所提供的感性材料(梯形)要足量,不可太少,也没有必要太多。太少不利于学生从中悟出规律,形成表象;太多会造成时间和精力上的浪费。第二,要引导学生对每一个材料加以分析和综合。第
三,要注意变式,全部材料要能反映出本要领的全部本质属性。
3.抓住概念之间的内在联系,通过新旧概念的对比,形成正确的概念。又如教学约数和倍数的概念时,可从"整除"这一概念入手,引出概念。
(三)概念的发展
学生掌握某一概念后,并不等于概念教学的结束,要用发展的眼光教概念。
1.不失时机地扩展延伸概念的含义。一个概念总是嵌在一些概念的群体之中。它们之间有纵横交错的内在联系,必须揭示清楚。如学习比的意义之后,就要及时地把"比"、"分数"、"除法"三者联系在一起,找出三者的联系和区别后,使学生居高临下,在一个广阔的背景下审视"比"这个概念,加深对概念的理解。
2.在一定的阶段形成一定的认识。抽象概念不要超越教材要求,否则会超越学生的承受能力。如一年级学习加法,只让学生认识到,加法表示"合并在一起","把两个数合并在一起"要用加法即可,而不能告诉学生确切的定义:"把两个数合并成一个数的运算,叫做加法"。
总之,提高中小学数学概念教学的水平,在概念教学实践中,教师要有意识地训练学生的数学思维方式、品质、能力和方法。加深学生对于数学概念的理解,是使学生融会贯通地掌握数学知识、增强能力的前提和关键,是把知识学好学活的必由之路。

⑻ 怎样进行高中数学概念教学

进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题。怎样学好数学
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。
有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。
知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要着重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含着人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。
数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。
在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。
如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。一.人人都能学好数学
数学对很多人来说是枯燥的、深奥的、抽象的,这是不争的事实,但不等于说就是难学的。有位数学名人说过:“掌握数学,就是善于解题,但不完全在于解题的多少,还在于解题前的分析、探索和解题后的深思穷究。”也就是说,解数学题不是要把自己当成解题的机器、解题的奴隶,而应该努力成为解题的主人,是要从解题中吸取解题的方法、思想,锻炼自己的思维,这就是所谓的“数学题要考查考生的能力”。那么解题前后该如何“分析探索”与“深思穷究”呢?实际上,世间万事万物都是相通的,不知道同学们是否喜欢语文?要想写一篇优秀的作文,必须审题、创意,要有写作提纲,这种创意须是来源于自己的生活,是自己亲身经历、所感所想的,靠杜撰绝对写不出好文章。那么解决一道数学题,也必须审题,要弄清题目的已知是什么?待求的是什么?这叫“有的放矢”。“的”就是要打开“已知”与“待求”之间的通道,就是“创意”,就是要利用自己现有的数学知识、解题方法沟通这种联系,或将问题化整为零、或将问题化为比较熟悉的问题。这种“创意”是一种长期数学思维的积淀,是自己解题经验的总结,是解题之后的感悟。因此,解题之后的总结是最不容忽视的。记得从小学开始,语文老师总是要求我们在阅读一篇文章之后说出它的中心思想,目的何在?我们做完一道数学题,也要想着总结它的中心思想:题目涉及到哪些知识点;解题中用到哪些解题方法或思想,以此与命题人“沟通”,才能达到“领悟”的境界。当然,解题后的总结,还应该考虑:问题是否可以有其它解法;是否可以进行推广用来解决与之相似的问题。只有做到“举一反三”,才能真得会“触类旁通”。总之,做任何学问都不能贪大求全,而应精益求精。
二.注意改进学习习惯
1.知识掌握过程中的三种不良习惯
忽略理解,死记硬背:认为只要记住公式、定理就万事大吉,而忽略了知识导出过程的理解,既造成提取应用知识的困难,更一次又一次地失去了对知识推导过程中孕含的思想方法的吸取。如三角公式“常记常忘,屡记不会”的根本原因就在于此,进而也谈不上用三角变换解题的自觉性了。
注重结论,轻视过程:数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。如学习中看不出何时需讨论、如何讨论。原因之一在于数学知识的前提条件模糊(如指对数函数的单调性,不等式的性质,等比数列求和公式,最值定理等知识)
忽略及时复习和强化理解:“温故而知新”这一浅显的道理谁都懂,但在学习过程中持之以恒地应用者不多。由于在老师的精心诱导教诲下,每节课的内容好像都“懂”,因此也就舍不得花八至十分钟的“宝贵”时间回顾当天的旧知。殊不知课上的“懂”是师生共同参与努力的结果,要想自己“会”,必须有一个“内化”的过程,而这个过程必须从课内延伸到课外。切记从“懂”到“会”必须有一个自身“领悟”的过程,这是谁也无法取缔的过程。
2.解决问题过程中的四种不良心态
缺乏对已学习过的典型题目及典型方法的积累:部分同学做了大量的习题,但收效甚微,效果不佳。究其原因,是迫于压力为完成任务而被动做题,缺乏必要的总结和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累—消化—吸收”才能“升华”。
在解决新问题时,缺乏探索精神:“学数学不做题目,等于入宝山而空返”(华罗庚语)。我们面对的社会,新的问题不断出现,无处不在,信息时代尤为如此。学习数学,需要在解决问题的实践中不断探索。怕困难、过份依赖老师,久而久之便会形成不积极钻研的习惯。我们在课堂教学中采用“先思后讲,先做后评”的方法,正是为激发学习者的积极主动的探索热情。希望同学们增强自信、勇于猜想、主动配合教师,使数学课堂教学成为学习者的思维活动的交流过程。
忽视解题过程的规范化,只追求答案:数学解题的过程是一个化归与转化的过程,当然离不开规范严谨的推理与判断。解题中跳跃太大、乱写字母、徒手作图,如此态度对待稍难的问题,是难以产生正确答案的。我们说解题过程的规范不只是规范书写,更主要是规范“思考方法”,同学们应该学会不断调控自己的思维过程,力争使解题尽善尽美。
不注重算理,忽视对运算途径的选择与实施:数学运算是按规则进行的,通用的规则和通行的方法当然要牢固掌握。但静止的相对性和运动的绝对性又决定了数学解题中的通法不可能一成不变。因此,在运用通性、通法、通则解决问题时,不能忽视算理,更应注重对合理简捷运算途径的猜想、推断与选择,那种不假思索、顺水推舟的做题方法必须改进。用“看”题或“想”题代替“做”题的学习方法,是引起运算能力差、导致运算繁冗的根本原因。
3.复习巩固中的三种错误认识
认为多做题可以代替复习理解:学好数学,做大量的配套练习是必要的。但只练不想、不思、不总结,未必有好结果。只会埋头做题,不会抬头思考的同学,虽然做了大量的题目,以往所学的知识也难以保持随机提取的状态,只有靠滚动式的总结,才能使知识永远“保态”,并且实现阶段性知识层次的飞跃。我们平时复习中的练习,阶段性的测试与月考,正是为了引导同学们多层次、全方位、多角度的复习理解,使知识连点成线构成网络。因此,善思考、勤总结是复习过程中必须的,也是知识和方法不断积累的有效途径。
不注意知识间的联系和知识的系统性:高考数学科命题常在知识的交汇处考查学生综合应用知识的能力。如果我们仅靠单一的知识掌握,缺乏对知识间的联系与知识系统性的充分认识,必然会导致认识肤浅,综合能力差,当然很难取得良好的成绩。我们平时教学中的“前后兼顾”和“解题规律的总结”等均是为了强化知识间的联系,望引起同学们足够的重视。
不善于纠正已犯过的错误:纠正错误的过程就是学习进步的过程,人类社会也是在与错误作斗争的过程中发展的。因此,善于纠错,及时总结经验教训也是学习的重要环节。部分同学对老师批改的作业常停留在“√”和“×”上,甚至熟视无睹;对试卷只问得分的多少,而不关心或很少关心为什么“错”。须知:回忆,不管是甜、是苦,总是有益的、美好的,总能鼓励自己更有信心地面向未来!改正错误的过程就是学习进步的过程。
总之,课前预习做好心理准备;课上脑、耳、手、口协调作战,提高45分钟的吸取效益;课后复习总结,充分思考与内化。相信通过同学们积极主动的学习,一定会成为数学的主人。
如何学好数学1
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2
高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
答一送一:
如何在学习上占第一
学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题”。)

参考资料:网络

⑼ 如何有效做好小学数学课程的拓展延伸

《课程标准》指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从从学生已有的生活经验出发……数学教学活动必须在学生的认知发展水平和已有的知识经验基础之上”。这充分说明,数学教学活动要以学生的发展为本,要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,要加强数学与现实生活中学生感兴趣的问题来结合,做好小学数学课程的拓展与延伸。在课堂学习中,学生侧重于规范性系统知识的学习,掌握数学知识,学习数学方法。课外学习则应该适当补充一些延伸性、实践性和探索性的学习内容。将课内与课外学习有机结合,根据教学内容设计有针对性的课外拓展题,将会有效地调动学生参与学习的积极性,使学生获得最大程度的发展,更利于培养学生的创新意识与能力。在课堂教学中,教师如何进行行之有效的引导,注重知识的延伸与拓展呢?现就自己在数学课堂教学中的拓展延伸谈谈几点体会:
一、利用拓展延伸,引领学生体验生活中的数学。

《标准》指出“人人学有价值的数学……,有价值的数学应该与学生现实生活有密切的关系,是对他们有吸引力,能使他们产生兴趣的内容。比如在认识了长度单位厘米、分米、米以后,我留给学生足够的时间和空间,让学生去测量周围事物的长度,自己的书桌、身高,到教室、黑板的长宽,父母的腰围等;在认识了元角分后,让学生课后模拟超市购物活动,既巩固了学生所学的知识,又加强了学生间的合作与交流;学习比的知识时,让学生学生在实际生活中搜集了各种形式的比,并在课堂教学中成为有效的学习资源,很好地帮助学生理解了数学中的比的实际意义。
二、利用拓展延伸,培养学生动手实践操作能力。
数学内容相对比较抽象,在有限的教学时空中,学生不可能都有机会动手实践,而课外则有更多的时间与机会,在数学相关知识的学习后如能及时设计实践性的拓展作业,将能很好地培养学生的动手实践能力。如教学《可能性的大小》,可以设计这样的实践题:自己做一个转盘,涂上红色、黄色和绿色,要使指针转动后偶尔落在绿色区域,而落在红色、黄色区域的次数差不多,应怎样涂色?先试着涂一涂,再转动若干次,看看结果怎样?这样的实践性作业可以使学生自觉地将数学知识运用于动手实践中,而且学生可以根据的自己的想法进行富有个性的设计。
三、利用拓展延伸,带领学生进入数学新时空。
教师要利用拓展延伸,鼓励学生读一些数学课本以外的科普读物、数学网站等的阅读思考活动,以引起思想共鸣和模仿实践,可以提高学生数学的学习兴趣、引发学生的求知欲。向学生提供好的课外读物,订阅一些数学刊物,如《小学生数学报》等,帮助和鼓励他们利用课外时间积极地阅读,可以使他们开阔知识视野,提高他们独立获取知识的能力。还可以让学生写数学日记,数学日记是学生在日常生活中运用数学知识解决实际问题的真实写照。让学生通过随笔或日记的方式记录下来,能够加深学生对数学知识的理解,密切数学与现实生活的联系,提高学生学以致用的能力。通过数学日记,使学生,家长、教师之间得到了很好的互动,孩子们也能把平时不敢说的话在日记中表达出来,彼此之间更多了一份了解。开展数学小调查活动,让学生进行社会实践,促进学生的学习兴趣,提升学生的活动能力,扩展学生的视野。
小学数学课程的拓展延伸应注意的问题:
不适时机与过度拓展延伸,往往带来较差的效果,所以应该注意以下几个问题:
一,拓展延伸活动的内容要适量。
拓展延伸活动的内容太少了,作用不大,太多了,又会喧宾夺主。合适的量度需要根据教学目标和所教学生认知需要来定。每项活动都有明确的目标,拓展延伸活动是为达成教学目标服务的,过量的拓展延伸活动会无端增加学生学习负担,减弱学习兴趣。
二,拓展延伸活动的内容的难度要适当。
拓展延伸一定要根据数学学科特点、学生的年龄特征、认知特点及知识经验进行适度的拓展延伸。不要因拓展延伸需要而忽略学生的认识理解程度。需要教师要根据教学目标,分析各种教辅资料,多角度、多层面地删选与补充有价值的资源,更好地帮助学生构建良好的认知结构。
三、拓展延伸活动的内容不能忽视教材体系。
很多教师在进行教学设计时,往往对教学拓展延伸进行了预设,尤其在新课学习环节。但部分教师仅从教的角度考虑问题,为了完成预设的教学流程,忽视学生的主体参与,忽视学生的主动探究,更忽视忽视教材体系。每节数学课都有学习主题,根据学生的学习基础与相关的知识经验,教师总会制定课时教学目标。但很多教师的教学拓展延伸活动忽视了教学重点,偏离了学习主题,游离了教材,有点喧宾夺主,成了无效劳动。拓展延伸活动的内容要充分树立教材观,从整个小学数学教学内容来整体分析,有目的、有层次地系统地培养学生学习数学的方法,培养学生对于数学的探究和合作交流的能力。
数学学习拓展延伸活动为我们的数学课堂打开了通向大千世界的窗口,让学生在更广阔的数学天地中获取信息,整合信息,丰富知识,感悟思想,创生思维,提升学习品质。有价值的课外拓展延伸活动是对课堂数学学习的有效补充,只要我们认真解读教材,客观分析学情,对课堂教学进行有效拓展延伸,克服随意性、盲目性,提高针对性、有效性,凸显自主性,创新性。可以激发学生的研究热情,同时也可以使学生养成用数学、做数学的良好习惯,只有注重知识的延伸与拓展,才能够让学生更好地探索与发现、巩固与提高,创新意识与能力也能得到有效培养。

阅读全文

与如何对数学概念进行拓展和延伸相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068