① 在小学六年级的数学解方程里面,X代表什么意思还有比如说5a (a又代表什么意思)y又代表什么意思
不只在小学,以后学习中,x和y还有以后你会遇到的z,都是代表一个未知的数,是需要求解的,也就是要根据其他条件算出它是多少,还有做题过程中,有时需要列方程,一些未知数也可以用x,y,z表示,然后再求出来就行了.
至于a,b,c,之类的就是代表一个已知的数,就像1,2,3,4,5,6等等,就是一个已知的数,它的数值就是a,b,c·····直接用它运算就可以了.
② 人教版小学六年级数学上册概念都是有哪些
人教版小学六年级数学上册概念如下:
第一单元位置:
1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。
2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。
3、平移方法:左右平移,列变行不变;上下平移,行变列不变。
第二单元分数乘法:
1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。
4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5、乘积是1的两个数叫互为倒数。
6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
7、一个数(0除外)乘以一个真分数,所得的积小于它本身。
8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9、一个数(0除外)乘以一个带分数,所得的积大于它本身。
第三单元分数除法:
1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除以整数(0除外),等于分数乘这个整数的倒数。
3、整数除以分数等于整数乘以这个分数的倒数。
4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、两个数相除又叫做两个数的比。
6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
11、一个数(0除外)除以一个真分数,所得的商大于它本身。
12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
13、一个数(0除外)除以一个带分数,所得的商小于它本身。
第四单元圆
1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。
11、圆的周长公式:C=πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。
13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
16、环形的周长=外圆周长+内圆周长。
17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d或C=πr+2r
18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。
23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
26、只有2条对称轴的图形是:长方形。
27、只有3条对称轴的图形是:等边三角形。
28、只有4条对称轴的图形是:正方形。
29、有无数条对称轴的图形是:圆、圆环。
30、直径所在的直线是圆的对称轴。
第五单元百分数
1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。
6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
7、百分率公式:
合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%
出勤率=出勤人数÷总人数100%
8、应纳税额:缴纳的税款叫应纳税额。
9、应纳税额的计算:应纳税额=各种收入×税率。
10、本金:存入银行的钱叫做本金。
11、利息:取款时银行多支付的钱叫做利息。
12、利率:利息与本金的比值叫做利率。
13、国债利息的计算公式:利息=本金×利率×时间。
13、本息:本金与利息的总和叫做本息。
单位换算:
1、长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面积单位换算
1平方千米=100公顷1公顷10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、体(容)积单位换算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量单位换算:1吨=1000千克1千克=1000克
运算定律:
1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)
3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc
6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)
7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c)
(2)六年级数学里是什么意思扩展阅读:
小学六年级数学学习方法
1、抓住课堂
平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。
2、高质量完成作业
不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。
3、勤思考,多提问
对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。
4、总结比较,理清思绪
要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。
要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。
5、有选择地做课外练习
课余时间并不充足,因此在做课外练习时要少而精,多反思
③ 六年级下册数学。数学广角鸽巢问题。中的总有和至少分别是什么意思
总有就是一定有的意思。至少就是不会少于的意思。
例如:10支圆珠笔放进3个文具盒里,每个放3支还剩1支,所以总有1个文具盒里至少有4支圆珠笔。
10÷3=3(支)……1(支)
3+1=4(支)
一定有一个文具盒里不会少于4支圆珠笔的意思。
根据题干分析可得:选择方法有:2个猪、2个狗、2个马、猪和狗、猪和马、狗和马,一共有6种拿法;
最差情况是6个小朋友选择的玩具各不相同,分别是上面的6种情况;
此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的;
6+1=7(个);
答:共有6种不同的拿法,至少要有7个小朋友才能保证有两人选的玩具是相同的.
构造抽屉的方法
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
④ 一到六年级数学学习了什么数(人教版)都是什么含义
整数和分数。1.整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。
一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).2.分数,把单位“1”平均分成若干份,表示这样的一份或几份的数叫做真分数。分母表示把一个物体平均分成几份,分子表示取了其中的几份。分数还有一个有趣的性质:一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
⑤ 小学数学六年级数学中的负增长是什么意思他还有些什么例子举出五六点
采纳我 所谓负增长,其增长率小于0,其实是减了。
下面给出证明:
假设基数是A ,增长率是b(b<0),
增长后为A(1+b)
因为b<0,所(1+b)<1,所以A(1+b)<A.
故得出结论,负增长率,实际上是减了
⑥ 数学六年级正比例和反比例中的一定是什么意思
“一定”意思就是“确定的,稳定的,不会改变的”
、用文字来描述:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线
2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:y:x=k(一定)。
3、正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.
4、比值=比的前项除以后项。
5、当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。
例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系.
例如:正方形的周长与边长两个量是否成正比例?
注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成正比例的量。