导航:首页 > 数字科学 > 初中数学题是怎么设计出来的

初中数学题是怎么设计出来的

发布时间:2022-08-30 10:25:56

A. 初中数学的函数综合题怎么做啊

(一) “几函”问题 :

1、线段与线段之间函数关系:

由于这类试题的主要要素是几何图形,因此,解决此类问题时首先要观察几何图形的特征,然后依据相关图形性质(如直角三角形性质、特殊四边形性质、平行线分线段成比例定理及其推论、相似三角形性质、圆基本性质、圆中比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量取值范围。

2、面积与线段间的函数关系的建立:

解决此类问题除了掌握第一类型的知识外,还要注意到以下两点:(1)常见图形面积公式,(2)学会灵活地将非特殊图形的面积转化为特殊图形的面积,将同底(或等高)的两个三角形的面积之比转化为它们高(或底)之比,将相似三角形面积之比转化为相似比(或周长的比、对应边上的高的比、对应边上的中线的比等)平方。

( 二)“函几”问题:

纵观历年各地的中考试题,几乎都出现函数中的几何问题,题目从难度上来看大多数是难题,少数属于中档题,题型上来看,绝大多数是探索题,少数是计算题,在设计方法上都注重创新,注重在初中数学主干知识的交汇处进行命题,考查意图上,都突出对数学思想方法和能力(特别对思维能力、探究能力、创新能力、综合运用知识能力)的考查;因此解决这类问题时要灵活运用函数知识,注意挖掘题目中隐藏条件,注意数形结合、数学建模、分类讨论等数学思想运用;下面谈一谈这类问题的分类。

1、三类基本初等函数中的图形面积问题:

解决这类问题时,通常要将坐标系中图形进行分割,一般情况是将它分割成一些两边(或三边)在坐标轴上或者两边(或三边)平行于坐标轴的三角形(或梯形、矩形)等;要注意点到坐标轴距离与点的坐标间的区别,利用点的坐标来表示线段的长度。

2、三类基本初等函数中三角形、四边形、圆问题:

这类题目一般由1~3问组成,第一问往往是求函数解析式,在此基础上再与几何中的三角形(全等、相似或特殊三角形是否存在等问题)四边形(面积函数关系式、特殊四边形是否存在)和圆(直线与圆的位置关系判断、圆中比例式是否成立)结合起来,利用初中的主干知识考查学生综合运用所学知识解决问题能力;解决这类问题时要注意几个问题:(1)注意弄清题目中所涉及概念,熟悉与之相关定理、公式、技巧和方法;(2)注意剖析综合问题结构,弄清知识点之间的联系,善于把一个综合题分成若干个基本题,各个知识点之间结合部,往往是由一个基本问题转化到另一个基本问题的关键;(3)注意从不同的角度来探索解题途径,注意运用“从已知看可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.

“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题策略,常用的解题策略一般有以下几种:

1、综合使用分析法、综合法。就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,对问题“两边夹击”,使它们在中间某个环节上产生联系,使问题得以解决。

2、运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;如本文例2中的第(2)个问题的解决就用到了此种思想;

3、注意使用分类讨论的思想。函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多个心眼儿,多从侧面进行缜密地思考,用分类讨论思想探讨出现结论一切可能性,从而使问题解答完整。

5、运用转化思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,大胆地说,不掌握转化的数学思想,就很难正确而全面解决函数与几何结合的综合问题.

4、运用数形结合思想。中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确澄清“形”的模糊,而“形”能直观地启迪“数”的计算;用数形结合思想来解决问题时,要注意由图形联想其性质,由性质联想相应图形,使问题得以简化;

B. 如何进行初中数学试题的命题学习心得

课改过程中如何出好初中数学试题是提高数学教学质量的重点和关键。只有不断创新,不断攀登数学学习的高峰,才能提高初中生的学习能力。我们在数学命题中一定要注意素质和应试相结合,不能一味地追求试题的难度而不考虑学生的应试能力。我们要在追求应试教育的同时,还要提高学生的自身素质。从而改变现在过度的追求应试教育。随着课改标准的不断翻新,教材的不断变动,我们一定要紧扣课改标准来进行命题。要做到课改标准与数学试题与时具进,不断发展。 伴随着课程改革工作的进展,全新的以学生发展为本的教育评价理念冲撞着多少年来的传统评价观,新的评价理念、评价内容、评价手段、评价体制的确立是新课程改革中亟待解决的最复杂、最深刻的问题。《数学课程标准》指出:"评价的目的是为了促进每位学生的全面发展,既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展,既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成和发展,评价要关注学生的个性差异,保护学生的自尊心和自信心。"随着新课程的实施,在构建和谐社会、以人为本的今天,怎样的考试有利于学生主动发展,怎样的考试有利于学生学习兴趣的提高,怎样的考试才能体现新课标的理念?是每一位教研人员和教师的职责。在多年的教学实践过程中,我们对试卷改革进行了积极的探索和实践,使试卷无论在功能和价值上,还是在内容、呈现方式上,都体现出新课程背景下的评价改革所倡导的"立足过程,促进发展"的评价理念和工作思路。在此展示出来,以求共勉共鉴。 一、试卷要有明确的、正确的指导思想 众所周知,教学的根本目的是为了培养各个层次的人才,考试的根本目的是为了评价教学质量和选拔人才。这两个根本目的本应不相悖,相辅相成的。但是,以片面追求升学率为核心的应试教育,会把测试、考试引向歧途,这种情况也会从考试的命题上反映出来。如难度过大,脱离绝大多数学生的实际,追求哗众取宠、不实用的技巧,故意把考试的重心移向较偏的知识点,等等。这样虽然会把"差距"拉开,但是并不一定能发挥选拔功能。另一方面以这种考试命题导向的结果,必然是难度层层加码,偏、难、怪题泛滥,学生课业负担再度加重,因此,考试的命题必须注意发挥正确的指导思想,以利于后继教学。出题时应注意它的难度和考查重点基础知识和基本技能,同时注意突出数学的基本思想和基本方法,突出数学的基本能力(三大能力和将数学运用于实际的能力)。这样的导向,有利于教学改革,有利于减轻师生的过重负担,有利于学生个性、特长的发展。命题人员在命题时必须具有这样明确的指导思想,这样才能从根本上保证试卷的质量。 二、把握好试卷内容的正确导向功能 1、试卷的知识点分布要合理 为此、要编写各项重点教学目标与明细规格表(或称双向细目表)。有了这张表,试卷的知识点分布就比较合理,保证一定的复盖率,正确地突出重点,也容易满足预定设计参数,如代数、几何的内容比例,各单元的比例,基础题与提高题的比例等等。 2、试卷的总体难度要确定得当 从理论上来说,难度为0.5是最理想的,但这样的难度使一半左右的学生考试不及格(甚至更多一些),这显然与义务教育的普及有矛盾。例如中考、毕业考多年来及格率都在95%以上。因此像试卷的总体难度一般都控制在0.8以上。从题型来看,一般先安排难度小的客观性题型,后安排难度稍大到大的非客观性题型。 3、试卷的效度要尽可能地高 一套题不可能把所学的所有知识技巧和能力逐题考到,这就要求试卷中的每一道题尽可能的提高其效度,包括内容效度和准则效度。 (1)内容效度。是概念的整个内容。实际上,任何一个试题都总是有关教学项目中全部题目中的一个样本,这个试题的代表性的程度,就是这一试题对有关教学项目(连同目标)的内容效度。用解方程来"代表"了解方程的知识、技能的"全体",因为这个方程分别通过整式化、有理化后变为一元二次方程后再求解,还需验根,显然比出一个一元一次方程来测试"解方程"的知识技能有代表性。 (2)准则效度。准则效度是测试的分数与有关的等级、标准之间的相关程度。 准则效度又可分为一致性效度与预测效度。例如每个学生数学的分数与在校平时数学总的得分之间的相关程度就是一致性效度。好的试卷往往一致性效度高。同时好的试卷预测效度也高,即数学分数高的学生进入下阶段学习数学能力强,考分也高,两者的相关程度高。还有其他的效度,但主要就是这两种效度,这两种效度互相是有联系的,内容效应直接影响准则效度。编制试卷不仅要有科学的组卷过程,而且要讲究试题科学性。这种科学性不仅表现在试题的安排布局上,而且更表现在试题本身的科学性上。试题不犯科学性错误是命题人员必须铭记在心的。 三、改革试卷的形式,体现人文关怀 新课程把"以人为本"作为基本理念,提出在任何时候都应该关注人的感受,关注学生的身心健康。然而,我们常见的数学试卷缺少人文性,谈不上教师对学生的关爱。根据新课程理念和数学学科特点,我们在数学试题的表述及试卷的编制方面作了较大的改革,试题表述多用鼓励性语言。 总之,系统研究数学试题,把握命题动向,能宏观上起到指导日常教学的作用,为了完善各种知识点的重新组合和适应教学改革,加强新型试题的出现,如阅读理解题、开放性问题、探索性问题、图标信息题和自编题进行归类分析,以展示各种题型所表现出的不同思考策略和解题方法,使学生把学到的知识构成网络、形成系统,把握知识的内在联系,打破章节、学科的界限,提高综合应用知识的能力和迁移能力,从而拓宽学生视野,培养学生思维的广阔性,提高学生分析问题解决问题的能力。 在初中数学命题中一定要注意学生的解题能力。要通过学生的应试解题使学生自己体会到学到了数学知识。而不是要命题考倒学生才算是好试题。在命题中我们要不断尝试新的命题方法。给学生带来新的解题思路,解题方法,解题技巧。使学生掌握学习的技巧和方法。在命题中还要注意结合理科的其他知识,综合命题。比如物理学的电学知识和数学的反比例函数结合出题,使学生在学数学的同时也学到物理学的知识。从而体现了数学知识是学习理科知识的工具。在每次的单元命题中做到步步为营,扎扎实实地使学生考有所学,学有所乐。以上就是我学习初中生数学试题命题的心得体会,望各位同学多提宝贵意见,共同学习,共同进步。

C. 怎样教初中数学例题

例题教学是课堂教学中的一个重要环节,俗语说:“鱼儿离不开水”,同样数学离不开例题教学。切实加强各类型例题的教学,对于学生理解和掌握基础知识,培养能力,发展智力,训练思维是至关重要的。

一、“概念型”例题,要突出本质属性
概念是客观事物的本质属性在人们头脑中的反映,数学概念的教学既是数学教学的重要环节,又是数学学习的核心,是学生思考问题、推理证明的依据。要建立一个新概念,教材中往往总要先举几个典型的例题,然后经过科学的抽象总结建立概念。
例如,初一学生初次接触正负数的概念,教学时我们可先向学生提供一些相反意义的例题(如“气温的零上、零下”,“仓库的进出”,“存款、贷款”,“向东、向西”等。),然后抓住这些实例的本质特征真正引出正负数的概念,这样学生就从一个感性认识自然地过渡到理性认识,使他们既容易接受又容易理解了。因此,对于建立概念的例题,我们必须抓住例子的实质特征,突出概念的本质,讲清概念的形式,抽象出数学概念。
二、“基础型”例题,要紧扣定理、法则
要学好数学,只有在学好基础知识的前提下,才能切实地运用它来解决其他有关问题,但学生对新学的基础知识印象不深,理解不透,运用不灵,这是学生普遍存在的现象,那么教师就必须通过一些基本例题的教学,切实加强基础知识的理解和巩固。
例如,当讲过定理(几何第二册P227):“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”后,我们接下去可补充举出一个典型例题,从而使学生对这个定理得到理解和巩固。
因此,在基础知识的教学中,我们教师在讲清基础知识的同时,必须设计若干巩固基础知识的例题(如判断题、填空题、口答题),对例题分析引导时,要紧扣定义、定理、法则、公式,并善于指出学生容易犯错误的地方,再通过一定量的练习、作业,使学生最终自行掌握基础知识。当然在“基础型”例题教学中,所举的例题不能过多、过杂、过难,必须要有一定的基础性和代表性,这样教师留有余地让学生在掌握基础知识的前提下去开拓、创新其他思维问题。
三、“技巧型”例题,要培养巧妙解题
一般的数学题有一套常规解题方法,但有的数学题按照常规的解法往往很复杂,甚至无法解出,这时我们应根据题目的特点,从整体上分析,善于从解题技巧上启发引导。
由于技巧型题目解法比较特殊,不易为学生发现,加上课本上这类例题出现不是很多,因此我们教师可选少量技巧型例题进行教学,对激发学生学习兴趣,培养学生创造性思维是很有好处的。在现行的新教材课本中出现的“B组习题,想一想,读一读,做一做”其实就包含很多的技巧型例题,这在很大程度上开发了学生的智力,也符合当今的“启发式”新教法。
四、“规律型”例题,要注意归纳综合
为了使学生在解题时有较敏锐的观察能力和较丰富的联想能力,举一反三,触类旁通,提高解题能力,“规律型”的题目正是考察学生以上这些能力。由于“规律型”题目的规律性和普通性,我们教师在举这样的例题应注意归纳综合,俗语说:“换汤不换药,万变不离其宗”。这话用在数学上正好反映数学知识的规律性。
例如,二次函数中有这样一类题目,给出抛物线 (ɑ≠0)中ɑ、b、c的符号,要求判断抛物线的开口方向,抛物线与 轴交点的位置,对称轴在轴的左侧还是右侧,抛物线与χ轴有无交点,并画出草图,象这样的问题,要先归纳综合它的规律性,规律型例题是培养学生能力的一座桥梁,我们在规律型例题教学中,必须善于采用比较、分析、归纳、综合的方法,揭示其解题规律,这就等于交给了学生解决问题的钥匙,从而使学生能够自己去解决新问题。
五、“综合型”例题,要寻求知识联系
为了培养学生综合运用知识、灵活解题的能力,综合型例题教学犹其显得重要。因为综合型题目是考察学生对所教过知识的掌握情况、熟练程度、概括能力,以及是否较全面了解知识的内在联系等。特别在数学的章节复习和初三数学总复习中综合型例题教学更是了解学生的综合解题能力。又由于综合题往往知识覆盖面广,联系较复杂,因此,教学时我们一定要有针对性地选好题型,利用知识的内在联系,引导学生寻求解决问题的关键,分析综合题时一般可将大题分解成若干小题,然后逐步探索各小题的知识联系,引出一个知识纽带.
六、“开放型”例题,要立足现实生活
教学要面向社会,面向生活,面向实践,数学中的知识与自然现象、人类生活密切相关。近几年来,各地中考出现了许多立意新颖的开放性较强的数学试题,如:经济类问题、投资类问题、动态类问题、方案设计类问题、说理类问题、讨论类问题等,它们大都跟我们现实生活联系在一起。这类试题的出现在客观上培养和发展学生的创新意识和创新能力,考查学生的发散思维能力和了解学生应用数学知识解决实际问题的能力,使学生真正感觉数学知识在现实生活中的重要性,也激发了学生学习数学的兴趣。
由于诸上原因,“开放型”立足生活实践的例题教学显得突出重要,因此,我们教师应多联系现实生活各方面知识应用于教学中,使学生在未走上社会之前就能了解各方面知识,解决各类问题,为今后投身社会建设打下基础。“开放性”例题教学应重在学生相互讨论,允许学生提出疑问,使他们善于发现问题,激发灵感。
例4,某单位计划十月份组织员工到H地旅游,人数估计在10 ~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元,该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余旅客八折优惠,问该单位应怎样选择,使其支付的旅游总费用较少?
本题是经济类讨论问题,可让学生相互讨论,经过讨论发现本题是利用方程、函数、不等式知识互相渗透来解决这个问题,可设该单位到H地旅游人数为X,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2,然后写出y1、y2关于X的两个函数关系式,再经过三种讨论① y1= y2,②y1> y2,③y1
总而言之,数学题型千变万化,教师所选的例题题型也应随之变化多端。例题的恰当与否直接关系到学生对一节课的吸收程度,并且对他本身思维的培养,智力开发都是非常重要的,作为数学教师,切不能无目的性乱举例题进行教学的“满堂灌”。这就无可厚非要求教师认真备课,选好例题,为例题教学作好充分准备。在当今素质教育的浪潮中,我们更要注重创新的教学方式,去引导学生,去挖掘学生的潜能,从而开发他们的智力,适应当今社会教育的形势。以上这些都急迫我们当代教师要有多样化、多类型的创新的课堂例题教学,使初中素质教育的教学方法从一个高峰走向另一个高峰。

D. 初中数学的题目老师们都是怎么弄的

在平时的卷子了,或者书上找的

E. 初中数学压轴题解题技巧有哪些

数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和 方法 的综合性,多数为函数型综合题和几何型综合题,或两类问题的组合。下面是我为大家整理的关于初中数学压轴题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1初中数学压轴题解题技巧

函数型综合题

以给定的直角坐标系和几何图形为背景,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法有待定系数法,包括关键是求点的坐标,而求点的坐标基本方法是几何图形的性质地几何法(图形法)和代数法(解析法)。

几何型综合题

先给定几何图形,根据已知条件进行计算,常以动点或动形为依托,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件全等,相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),此类问题当属几何与代数的综合问题。找等量关系的途径在初中主要有利用勾股定理、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。是压轴题的选择梯形。

2初中数学应用题的解题技巧

认真审题

很多学生在看到应用题之后往往急于寻找其中可用的条件,因此他们往往把目光都集中在一些数据上,而忽视了文字叙述,尤其是在考试时间比较紧张的时候,很多学生在做应用题的时候往往在读题目时囫囵吞枣,没有审清题意就急于解答,从而导致错误的发生。因此,要想做好应用题首先就要认真审题,理清题目中所表达的意义,这样,才能够进行接下来的解题活动。

归纳问题

在读完题目以后,学生首先要做的就是对题目进行归纳,了解清楚所做的题目属于什么类型,这样才能够根据不同的类型把实际问题转化为数学模型。在初中阶段,我们接触的比较多的应用题类型主要包括行程问题、工程问题、生产问题、营销与策略问题、增长率问题、几何问题等,而我们在读完题目进行分类以后,就可以根据不同类型的问题在题目中有目的地寻找需要的条件。例如,在做到路程问题时,我们就要在题目找出路程、速度、时间等数量及其关系,在做到营销与策略的问题时,就要理清楚单价、数量、总价等条件。总之,只有先进行科学的归纳,才能够在此基础上运用之前的知识来进行解题。

找出问题

所谓找出问题,就是要明确在这道应用题中需要我们求出什么,然后从问题中利用 逆向思维 来推测出要想解决这些问题需要哪些条件,这样,我们才能以这些信息为依据回到题目中去努力寻找这些条件,为解题做准备。

理清数据信息

为了提高学生的分析和归纳的能力,很多的应用题中会故意给学生设置一些迷雾,给出一些与题目无关的条件或者数据。因此,我们要想解决问题,就要努力在所给出的条件中整理出所需的数据,然后根据题目要求对这些条件或者数据进行整理分析。

3中考数学难题解题技巧

正向思维是最常用的方式

也就是审题之后顺着题目要求,从前到后一点点求证,这是证明题的基本方法,中等难度题目、简单难度题目中较多使用的就是这种方法。 逆向思维,就是与正向思维相反,从求证入手,要想做到这样的结果,需要什么样的条件,一步一步反向分析。逆向思维对于读完题干要求之后完全不知从何入手的题目有很大的解题帮助,从结论出发,有时候问题反而更简便

例如:要证明有两条边长度相等,那么结合图形发现只要证明他们存在的三角形相等就可以了;为了证明这两个三角形是全等的,那么我们需要有什么样的角的条件;为了找到角之间的关系,我们需要在哪里做一条辅助线……这样思考下去,其实所需要的一切条件就都具备了。这种解题方法在平时的解题中要对学生多锻炼。

正逆结合

这是高难度题目中重点强调的解题思路,对于一些从结论很难得出完整思路,又不知道从哪里开始下手时,就要选取正逆结合的方法。初中数学中,基本上题目给的已知条件都是有用的,所以一定不能放过每一个条件,多做引申。

比如给了三角形一条边的中点,我们就要考虑是否要做出中位线,给出了梯形我们就要考虑是不是要做高,是不是要平移腰或者对角线,是不是要补出某种图形等等。

4初中数学证明题解题技巧

仔细审题,确定题意

审题是做题的第一步,这个过程就像翻译机的工作原理,要把纯文字语言转换成我们所理解的数学模型。首先要仔细的读题,标注出重点词,分清已知和求证。比如讲题目中的要求改写成“如果在等腰三角形中,做出两底角的角平分线,那么可以推出这两条角平分线长度相等”。如果有图就最好结合图形,如果题目没有给图,就要求学生 根据题意做出合理图形,将图形模型建立起来,切忌凭空想象,一定要动手画图。再次就是已知数学语言和符号写出“已知”和“求证”,“已知”是命题的条件,“求证”是命题的结论,一定要注意已知和求证的表达方式是数学语言、符号。

审题中需要注意的是,除了要标记题目的重点,还要学会适当的引申。在审题的过程中将一些课堂上学过的基本定理和基本图形、特殊图形与题目相结合,便于后面进行解题时提高正确率和速度。这也是对学生构建知识体系提出了更高的要求。

不重不漏,仔细检查

分析过程完成后,就是答题的重头戏了,用数学的语言和符号阐述整个证明过程。书写过程要求严谨细致,既不能无中生有,也不能胡说八道、乱来一气,要做到有根有据,有因为、有所以。在几个解题思路中选取一个,按照解题思路完整的表达就可以了。

中学生错题率高还有一个原因就是没有养成检查的好习惯。数学的严谨性在证明题中体现得淋漓尽致,每一个步骤都要具备合理性,要写出足够证明结论的公理、定理或者推论,不能凭空捏造,也不能随意推想。在证明的过程中,每一步都要仔细检查,不能有所疏漏、少条件,也不能犯写作答案,看错要求等等粗心导致的错误。只有仔细检查,才能保证做到言之有理,言之有据,不失一分。


初中数学压轴题解题技巧有哪些相关 文章 :

1. 初中数学中考知识重难点分析

2. 2020中考数学科目的压轴题解题方法

3. 2020中考数学备考之压轴题十个方法

4. 初二数学压轴题答题技巧

5. 学好初中三年数学的方法有哪些

6. 怎样提高初三数学压轴题

7. 初三数学学习方法和技巧大全

8. 中考数学总复习六大策略

9. 2020高考数学得高分的技巧大全

F. 一道数学题是怎么编出来的

如何进行数学试题的改编和原创

试题改编的一般方法

试题改编是对原有试题进行改造,
使之从形式上、
考查功能上发生改变而成为新题。

编试题的具体方法有:设置新的问题情境、不同题型之间的转换、
重新整合、转变考查目标
等。

1
、设置新的问题情境

一道常规的纯粹数学问题,
当把它放置在一个新的问题情境中时,
由于知识载体发生了
改变,这道试题就变为一道新题,这可以反映出数学知识应用的灵活性。

2


不同题型之间的转换

在高考数学试卷中,
出现了较多的通过改造题型来获取新试题的形式。
例如:
许多压轴
解答题的命题材料很好,从考查内容和考查功能上来看往往是很经典的试题,但由于第二、
三问的难度过大,
所以常常会使考生因感到畏惧而放弃解答该题。
其实,
第一问可能非常简
单,也很容易上手,此时,就将第一问压缩、升华或从其它角度设问,再辅以选项的巧妙设
计,
从而将第一问变为一道新颖的选择题或填空题。
当然,
也可通过深入发掘内涵或扩充运
用范围的方式,把经典的选择题、填空题改造成解答题的形式。

①解答题改编为选择题或填空题

改编模式

保持原型的考查内容不变,
将问题的设问形式加以改造,
同时添加适当的问
题情境,省去对具体解题过程的考查,而构造出的新问题。

②解答题各种呈现方式的转变

改编模式:
保持原型的考查内容不变,
对问题的结构、
问题的设问形式、
问题的表述方
式等加以改造,可以构造出一系列的新问题。

3
、不同内容、不同素材之间的重组整合

单纯考查代数内容(或者几何内容、
或者概率统计)单一知识点的试题,往往只占高考
试卷的较小部分的分值,
高考试题命制教师更多地考虑的是,
如何在同一学习领域
(如代数、
几何或概率统计)
知识点的交汇处命制试题,
或者在不同学习领域知识点的融合处设计问题,
或者把各种题型组合起来命制试题。
重组整合的常见方法是根据考查目标、
考查内容确定命
题材料的重组方式,然后设问。

①考查内容形式的整合

改编模式:
在保留原题内核不变的前提下,
考虑添加一定的特殊符号或文字信息、
图表
信息或图形信息,或者新的定义,然后以新的表达方式呈现出来。其改编的一般模式如下:
一般的问题载体;添加新的定义或采取新的表述方式。

②考查方式和技能的重组

③不同知识点的重新组合

改编模式

将彼此联系紧密的一些知识点,
借助一定的素材,串联或并联起来,
可以构
造出一系列的问题。

④各种题型的自然融合

改编模式
:原型中本来也包含了多种题型(如作图题、计算题等)
,将原来的题面以不
同的形式呈现或将原来的条件重新组合,就可以构造出一系列的问题。

4
、转变考查目标

一道常规的数学问题,当把它的条件的一部分、或结论的一部分转换一种表述方式时,
考查的侧重点就可能发生较大的改变。
例如,
可以把对某一概念的侧重于文字表达能力的考查为图形转换能力或计算能力,
常见的转变考查目标的命题方法有如下几种形式:
单纯的运
算技能考查转化为应用能力考查;
单纯的推理能力考查转化为归纳探求能力考查,
单纯的数
或形的知识内容的考查转化为数形结合能力的考查等。

G. 新课标下初中数学如何教学设计

一.单元教学设计的意义教学设计是我们教学中非常重要的环节。大家都知道做任何事情都需要做一个设计,有一个设计就会使我们做的更加主动。单元设计,首先什么是单元,比如说一章,比如说一个模块,比如一个模块里的一块面,比如说一元二次方程这章,我们可以把它当作一个完整的内容来进行设计。当然,也可以做跨章节的内容的教学设计。比如说一次函数,我们可以把一次函数这章分为三块,一块是平面直角坐标系,函数知识初步,一块是一次函数的知识,第三块是反比例函数的内容。函数知识是初中的一个重点,怎么样对这些进行教学设计,我们有一个整体的思考非常重要。另外,老师应该能够关注关于方法和能力方面的单元教学设计。比如计算,我们就可以考虑一下,作为一个计算能力,在初一、二年级里,怎么样进行设计。使得我们的学生从小学的水平,能够有一个明显的提升。我们可以分析一下,支持计算能力的,在课程中有哪些载体。然后在这些载体中,应该如何帮助学生提升他的计算能力。所以我想这样的一些思考,都是单元教学的设计的很重要的内容,与我们传统单元的教学设计的内容,需要开拓一点,视野开拓一点。在单元教学设计,有一个,或者有两个核心的主题词,第一个是整体,第二个是效率。我觉得做好单元教学设计,会使你知道在什么时候,我讲到什么程度,我后面还会对这件事情有所解释的。当然现在对单元教学设计的思考范围还是更大一些。比如对有一些概念,比如说弧度的概念,我们也可以对他有一个单元的思考。因为绝不是说讲弧度的定义的时候,才会涉及到弧度。只能这样就无法向学生解释清楚为什么加人弧度概念等等,所以我们应该以一个整体的观点来思考我们整体的教学。这样会提高教学效率。二.单元教学设计的含义单元教学设计:对教材中的章或单元等相对完整、综合的教学内容进行教学设计。一课时教学设计:对适合在一节课内实施的教学内容进行教学设计。三.单元教学设计的原则与注意事项 (1)以单元或章为单位,体现各个知识点之间的逻辑关系 (2)体现单元学习的完整性 (3)体现单元学习的层次性 (4)多种教学形式相结合,教师主导、学生探究相结合 (5)注重单元内容的综合运用 (6)提供评价方法及模板…… 四.如何进行单元教学设计(1)基本结构框架 (2)新课程标准指出:数学课程的设计,要充分考虑本学段学生数学学习的特点,符合学生的认知规律和心里特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验数学问题、构建数学模型、寻求结果、解决问题的过程。 4.学生分析:习惯、态度、对学过内容的掌握 5.教材分析(1)教材分了17个学时讲授,2个学时复习,写出具体课时安排(2)可能遇到问题 6.教学设计的一些问题(1)什么内容以教授为主(2)如何利用学过的知识(3)如何组织学生自主学习:利用符号语言梳理学过内容(4)让学生总结一些好的案例:比较不同语言表述同一对象(5)如何提示学生“实数和二次根式”在后面学习中的作用(6)“实数和二次根式”将伴随学生经历从初中到高中学习的过渡,在教学设计中关注以下问题:①学生的学习习惯;②学生学好数学的信心;③帮助学生梳理学习过的内容 7.教学反思、总结(1)收集一些教学案例(2)与自己教学比较(3)完成一个总结(4)修订自己的教学设计

H. 初中数学解题技巧

有关初中数学解题技巧

初中数学里的解题技巧是非常重要的一环,我这里有很实用的初中数学解题技巧教给大家,希望对大家有帮助!

第一部分 初中数学考试答题技巧

一、答题原则

大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。

答题时,一般遵循如下原则:

1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。

2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。

4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。

6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。 另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。

二、审题要点

审题包括浏览全卷和细读试题两个方面。

一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。

二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

三、时间分配

近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目

中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。

在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。

一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

四、大题和难题

一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。

五、各种题型的解答技巧

1.选择题的答题技巧

(1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。

(2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。

(3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。

(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的题目外,一般不猜A。

2.填空题答题技巧

(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。

3.解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

六、如何检查

在考试中,主动安排时间检查答卷是保证考试成功的`一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。

检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。

选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。

对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。

计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠经验判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做

七、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。

同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是:

1. 草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。

2. 对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。

3. 检查过程中,草稿纸更是最好的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。

第二部分 提高解题速度的八步骤

在考试时,我们常常感到时间很紧,试卷还没来得及做完,就到收卷时间了,虽然有些试题,只要再努一把力,我们是有可能做出来的。这其中的原因之一,就是解题速度太慢。

几乎每个学生都知道,要想取得好成绩,必须努力学习,只有加强练习,多做习题,才能熟能生巧。可是有些学生天天趴在那里做题,但解出的题量却不多,花了大量的时间,却没有解出大量的习题,难道不应找一找原因吗?何况,我们并不比别人的时间更多。试想,如果你的解题速度提高10倍,那会是怎样一种情景?解题速度提高10倍?可能吗?答案是肯定的,完全可能。关键在于你想与不想了。

那么,究竟怎样才能提高解题速度呢?

首先,应十分熟悉习题中所涉及的内容,做到概念清晰,对定义、公式、定理和规则非常熟悉。你应该知道,解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。我指导学生按此方法学习,几乎所有的学生都大大提高了解题的速度,其效果非常之好。

第二,还要熟悉习题中所涉及到的以前学过的知识和与其他学科相关的知识。例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。这时我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

第三,对基本的解题步骤和解题方法也要熟悉。解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。

第四,要学会归纳总结。在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

第五,应先易后难,逐步增加习题的难度。人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。

其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

第六,认真、仔细地审题。对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”所以,在实际解题时,应特别注意,审题要认真、仔细。

第七,学会画图。画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。

最后,对于常用的公式,如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。

总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。

;
阅读全文

与初中数学题是怎么设计出来的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068